- Tytuł:
- Even Vertex Tetrahedral Mean Graphs
- Autorzy:
-
Banu, A. Fathima
Chelliah, S.
Syed Ali Nisaya, M. P. - Powiązania:
- https://bibliotekanauki.pl/articles/1193397.pdf
- Data publikacji:
- 2021
- Wydawca:
- Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
- Tematy:
-
Tetrahedral number
even vertex tetrahedral mean graph
even vertex tetrahedral mean labeling - Opis:
- The nth tetrahedral number is denoted by T_n and is of the form T_n = 1/6 n (n+1) (n+2). A graph G with p vertices and q edges is said to have an even vertex tetrahedral mean labeling if there exists an injective function f: V(G) →{0┤, 2, 4, . . . , 2T_q-2 , ├ 2T_q } such that the induced edge function f^*: E(G) →{T_1,T_(2 , . . .) ,T_q } defined by f^*(uv) = (f(u)+ f(v))/2 ∀ e=uv∈E(G) is a bijection. A graph which admits even vertex tetrahedral mean labeling is called an even vertex tetrahedral mean graph. In this paper, we introduce even vertex tetrahedral mean labeling and we prove that path, star, bistar, coconut tree, caterpillar, shrub, P_(m )@ P_n, banana tree, Y- tree and F-tree are even vertex tetrahedral mean graphs.
- Źródło:
-
World Scientific News; 2021, 156; 26-39
2392-2192 - Pojawia się w:
- World Scientific News
- Dostawca treści:
- Biblioteka Nauki