Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "error estimate" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Numerical Analysis and Simulations of Quasistatic Frictionless Contact Problems
Autorzy:
Fernandez Garcia, J. R.
Han, W.
Shillor, M.
Sofonea, M.
Powiązania:
https://bibliotekanauki.pl/articles/908327.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza numeryczna
quasistatyka
metoda elementów skończonych
quasistatic contact
Signorini condition
normal compliance
viscoplasticity
variational inequalitie
error estimate
finite element method (FEM)
numerical approximation
Opis:
A summary of recent results concerning the modelling as well as the variational and numerical analysis of frictionless contact problems for viscoplastic materials are presented. The contact is modelled with the Signorini or normal compliance conditions. Error estimates for the fully discrete numerical scheme are described, and numerical simulations based on these schemes are reported.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 1; 205-222
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation
Autorzy:
Campos Pinto, M.
Powiązania:
https://bibliotekanauki.pl/articles/929689.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda Lagrangiana
oszacowanie błędu
szybkość zbieżności
fully adaptive scheme
semi-Lagrangian method
Vlasov-Poisson equation
error estimate
convergence rates
optimal transport of adaptive multiscale meshes
Opis:
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)- dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow, it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter \epsilon which represents the local interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L\infty towards the exact ones as \epsilon and \delta t tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger, 2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 3; 351-359
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A finite difference method for nonlinear parabolic-elliptic systems of second-order partial differential equations
Autorzy:
Malec, M.
Sapa, L.
Powiązania:
https://bibliotekanauki.pl/articles/255499.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
partial differential equation
parabolic-elliptic system
finite difference method
finite difference scheme
consistence
convergence
stability
error estimate
uniqueness
Opis:
This paper deals with a finite difference method for a wide class of weakly coupled nonlinear second-order partial differential systems with initial condition and weakly coupled nonlinear implicit boundary conditions. One part of each system is of the parabolic type (degenerated parabolic equations) and the other of the elliptic type (equations with a parameter) in a cube in R1+n. A suitable finite difference scheme is constructed. It is proved that the scheme has a unique solution, and the numerical method is consistent, convergent and stable. The error estimate is given. Moreover, by the method, the differential problem has at most one classical solution. The proof is based on the Banach fixed-point theorem, the maximum principle for difference functional systems of the parabolic type and some new difference inequalities. It is a new technique of studying the mixed-type systems. Examples of physical applications and numerical experiments are presented.
Źródło:
Opuscula Mathematica; 2007, 27, 2; 259-289
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An analytical and numerical approach to a bilateral contact problem with nonmonotone friction
Autorzy:
Barboteu, M.
Bartosz, K.
Kalita, P.
Powiązania:
https://bibliotekanauki.pl/articles/330898.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
linearly elastic material
bilateral contact
nonmonotone friction law
hemivariational inequality
finite element method
error estimate
nonconvex proximal bundle method
quasi augmented Lagrangian method
Newton method
metoda elementów skończonych
szacowanie błędu
metoda Lagrangiana
metoda Newtona
Opis:
We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are realized to compare the two numerical approaches.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 2; 263-276
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local accuracy and error bounds of the improved Runge-Kutta numerical methods
Autorzy:
Qureshi, S.
Memon, Z.
Shaikh, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/122862.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
error estimate
remainder term
principal error function
truncation error
Lotkin bound
granice błędu
metoda numeryczna Runge-Kutty
błąd obcięcia
granica Lotkina
funkcja błędu
szacowanie błędu
Opis:
In this paper, explicit Improved Runge-Kutta (IRK) methods with two, three and four stages have been analyzed in detail to derive the error estimates inherent in them whereas their convergence, order of local accuracy, stability and arithmetic complexity have been proved in the relevant literature. Using single and multivariate Taylor series expansion for a mathematical function of one and two variables respectively, slopes involved in the IRK methods have been expanded in order to obtain the general expression for the leading or principal term in the local truncation error of the methods. In addition to this, principal error functions of the methods have also been derived using the idea of Lotkin bounds which consequently gave rise to the error estimates for the IRK methods. Later, these error estimates were compared with error estimates of the two, three, and four-stage standard explicit Runge-Kutta (RK) methods to show the better performance of the IRK methods in terms of the error bounds on the constant step-size h used for solving the initial value problems in ordinary differential equations. Finally, a couple of initial value problems have been tested to determine the maximum absolute global errors, absolute errors at the final nodal point of the integration interval and the CPU times (seconds) for all the methods under consideration to get a better idea of how the methods behave in a particular situation especially when it comes to analyzing the error terms.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 4; 73-84
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Revisiting the optimal probability estimator from small samples for data mining
Autorzy:
Cestnik, Bojan
Powiązania:
https://bibliotekanauki.pl/articles/330350.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
probability estimation
small sample
minimal error
m-estimate
estymacja prawdopodobieństwa
mała próbka
błąd minimalny
Opis:
Estimation of probabilities from empirical data samples has drawn close attention in the scientific community and has been identified as a crucial phase in many machine learning and knowledge discovery research projects and applications. In addition to trivial and straightforward estimation with relative frequency, more elaborated probability estimation methods from small samples were proposed and applied in practice (e.g., Laplace’s rule, the m-estimate). Piegat and Landowski (2012) proposed a novel probability estimation method from small samples Eph√2 that is optimal according to the mean absolute error of the estimation result. In this paper we show that, even though the articulation of Piegat’s formula seems different, it is in fact a special case of the m-estimate, where pa = 1/2 and m = √2. In the context of an experimental framework, we present an in-depth analysis of several probability estimation methods with respect to their mean absolute errors and demonstrate their potential advantages and disadvantages. We extend the analysis from single instance samples to samples with a moderate number of instances. We define small samples for the purpose of estimating probabilities as samples containing either less than four successes or less than four failures and justify the definition by analysing probability estimation errors on various sample sizes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 4; 783-796
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Third order singularly perturbed delay differential equation of reaction diffusion type with integral boundary condition
Autorzy:
Sekar, Elango
Tamilselvan, Ayyadurai
Powiązania:
https://bibliotekanauki.pl/articles/122568.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
singular perturbation problem
finite difference scheme
delay
integral boundary condition
error estimate
schemat różnic skończonych
opóźnienie
oszacowanie błędu
metoda numeryczna
metoda równań skończonych
Opis:
A class of third order singularly perturbed delay differential equations of reaction diffusion type with an integral boundary condition is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The method suggested is of almost first order convergent. An error estimate is derived in the discrete norm. Numerical examples are presented, which validate the theoretical estimates.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 99-110
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of a frictional contact problem for thermo-electro-elastic materials
Autorzy:
Ouafik, Youssef
Powiązania:
https://bibliotekanauki.pl/articles/2055046.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
thermo-electro-elastic material
frictional contact
Finite Element Method
error
estimate
numerical simulations
Opis:
A numerical method is presented for a mathematical model which describes the frictional contact between a thermo-electro-elastic body and a conductive foundation. The contact is described by Signorini’s conditions and Tresca’s friction law including electrical and ther- mal conductivity conditions. Our aim is to present a detailed description of the numerical modelling of the problem. To this end, we introduce a discrete scheme based on the finite element method. Under some regularity assumptions imposed on the true solution, optimal order error estimates are derived for the linear element solution. This theoretical result is illustrated numerically.
Źródło:
Journal of Theoretical and Applied Mechanics; 2020, 58, 3; 673--683
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A posteriori error estimates for beams with inexact flexural stiffness representation
Autorzy:
Torii, André J.
Gracite, Paula M.A.
Miguel, Leandro F.F.
Lopez, Rafael H.
Powiązania:
https://bibliotekanauki.pl/articles/24201505.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
beam
error estimate
inexact stiffness
belka
oszacowanie błędów
Opis:
In this work, we present a posteriori error estimates for the Euler-Bernoulli beam theory with inexact flexural stiffness representation. This is an important subject in practice because beams with non-uniform flexural stiffness are frequently modeled using a mesh of elements with constant stiffness. The error estimates obtained in this work are validated by means of two numerical examples. The estimates presented here can be employed for adaptive mesh refinement.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2023, 22, 2; 62--74
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bernstein operational matrix of differentiation and collocation approach for a class of three-point singular BVPs: error estimate and convergence analysis
Autorzy:
Sriwastav, Nikhil
Barnwal, Amit K.
Wazwaz, Abdul-Majid
Singh, Mehakpreet
Powiązania:
https://bibliotekanauki.pl/articles/29519371.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Bernstein polynomials
collocation method
three-point singular BVPs
convergence analysis
error estimate
Opis:
Singular boundary value problems (BVPs) have widespread applications in the field of engineering, chemical science, astrophysics and mathematical biology. Finding an approximate solution to a problem with both singularity and non-linearity is highly challenging. The goal of the current study is to establish a numerical approach for dealing with problems involving three-point boundary conditions. The Bernstein polynomials and collocation nodes of a domain are used for developing the proposed numerical approach. The straightforward mathematical formulation and easy to code, makes the proposed numerical method accessible and adaptable for the researchers working in the field of engineering and sciences. The priori error estimate and convergence analysis are carried out to affirm the viability of the proposed method. Various examples are considered and worked out in order to illustrate its applicability and effectiveness. The results demonstrate excellent accuracy and efficiency compared to the other existing methods.
Źródło:
Opuscula Mathematica; 2023, 43, 4; 575-601
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies