- Tytuł:
-
Neural identification of images showing selected varieties of stored potatoes
Neuronowa identyfikacja obrazów wybranych odmian magazynowanych ziemniaków - Autorzy:
-
Lange, D. M.
Przybył, K.
Łukomski, M.
Koszela, K.
Boniecki, P. - Powiązania:
- https://bibliotekanauki.pl/articles/334965.pdf
- Data publikacji:
- 2018
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
- Tematy:
-
artificial neural networks
neural modeling
image analysis
graphic descriptors
edible potato tubers
sztuczne sieci neuronowe
modelowanie neuronowe
analiza obrazu
deskryptor graficzny
bulwa
ziemniak jadalny - Opis:
-
In recent years, there has been a growing interest in the use of modern IT tools in agricultural engineering. Both image analysis methods and artificial neural networks, designed to reproduce the work of the human brain, serve to build predictive and classification models, highly useful for modern agriculture. Correct identification of both the seed material and the produced crops becomes a priority of agricultural engineering, ensuring adequate efficiency and cost-effectiveness of agrotechnical operations. This article presents a project whose aim was to develop an effective neural model for qualitative identification of the variety of stored consumer potato tubers by using input data obtained in the process of digital image analysis. The designed and created artificial neural network model (multilayer perceptron), using informations in the form of selected graphic descriptors, classifies three selected varieties of edible potato (Denar, Gala, Vineta).
W ostatnich latach dostrzec można wzrastające zainteresowanie wykorzystywaniem nowoczesnych narzędzi informatycznych w inżynierii rolniczej. Zarówno metody analizy obrazu, jak i sztuczne sieci neuronowe, mające odwzorowywać pracę ludzkiego mózgu, służą budowaniu modeli predykcyjnych i klasyfikacyjnych, wysoce użytecznych dla współczesnego rolnictwa. Właściwa identyfikacja zarówno materiału siewnego, jak i wytworzonych plonów, staje się priorytetem inżynierii rolniczej, zapewniając odpowiednią efektywność i opłacalność przeprowadzanych zabiegów agrotechnicznych. Niniejszy artykuł przedstawia projekt, którego celem było opracowanie efektywnego modelu neuronowego służącego do identyfikacji jakościowej odmiany magazynowanych bulw ziemniaków konsumpcyjnych przy użyciu danych wejściowych pozyskanych w procesie analizy obrazów cyfrowych. Zaprojektowany i wytworzony model sztucznej sieci neuronowej (perceptron wielowarstwowy), korzystający z informacji w postaci wybranych deskryptorów graficznych, klasyfikuje trzy wybrane odmiany ziemniaka jadalnego (Denar, Gala, Vineta). - Źródło:
-
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 110-113
1642-686X
2719-423X - Pojawia się w:
- Journal of Research and Applications in Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki