Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "edge detour number" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On edge detour graphs
Autorzy:
Santhakumaran, A.P.
Athisayanathan, S.
Powiązania:
https://bibliotekanauki.pl/articles/744551.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
detour
edge detour set
edge detour basis
edge detour number
Opis:
For two vertices u and v in a graph G = (V,E), the detour distance D(u,v) is the length of a longest u-v path in G. A u-v path of length D(u,v) is called a u-v detour. A set S ⊆V is called an edge detour set if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number dn₁(G) of G is the minimum order of its edge detour sets and any edge detour set of order dn₁(G) is an edge detour basis of G. A connected graph G is called an edge detour graph if it has an edge detour set. It is proved that for any non-trivial tree T of order p and detour diameter D, dn₁(T) ≤ p-D+1 and dn₁(T) = p-D+1 if and only if T is a caterpillar. We show that for each triple D, k, p of integers with 3 ≤ k ≤ p-D+1 and D ≥ 4, there is an edge detour graph G of order p with detour diameter D and dn₁(G) = k. We also show that for any three positive integers R, D, k with k ≥ 3 and R < D ≤ 2R, there is an edge detour graph G with detour radius R, detour diameter D and dn₁(G) = k. Edge detour graphs G with detour diameter D ≤ 4 are characterized when dn₁(G) = p-2 or dn₁(G) = p-1.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 1; 155-174
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies