Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "eccentric distance sum" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Comparing Eccentricity-Based Graph Invariants
Autorzy:
Hua, Hongbo
Wang, Hongzhuan
Gutman, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/31348117.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
eccentricity (of vertex)
Zagreb eccentricity index
eccentric distance sum
connective eccentricity index
Opis:
The first and second Zagreb eccentricity indices (EM1 and EM2), the eccentric distance sum (EDS), and the connective eccentricity index (CEI) are all recently conceived eccentricity-based graph invariants, some of which found applications in chemistry. We prove that EDS ≥ EM1 for any connected graph, whereas EDS > EM2 for trees. Moreover, in the case of trees, EM1 ≥ CEI, whereas EM2 > CEI for trees with at least three vertices. In addition, we compare EDS with EM2, and compare EM1, EM2 with CEI for general connected graphs under some restricted conditions.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1111-1125
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eccentric distance sum index for some classes of connected graphs
Autorzy:
Bielak, Halina
Broniszewska, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/746990.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Adjacent eccentric distance sum
diameter
distance
eccentricity
radius
Wiener index
Opis:
In this paper we show some properties of the eccentric distance sum index which is defined as follows \(\xi^{d}(G)=\sum_{v \in V(G)}D(v) \varepsilon(v)\). This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2017, 71, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies