- Tytuł:
- Machine learning and artificial intelligence techniques for detecting driver drowsiness
- Autorzy:
-
Prathap, Boppuru Rudra
Kumar, Kukatlapalli Pradeep
Hussain, Javid
Chowdary, Cherukuri Ravindranath - Powiązania:
- https://bibliotekanauki.pl/articles/27314194.pdf
- Data publikacji:
- 2022
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
artificial intelligence
machine learning
drowsiness detection
image processing
convolutional neural networks
AI visuals - Opis:
- The number of automobiles on the road grows in lockstep with the advancement of vehicle manufacturing. Road accidents appear to be on the rise, owing to this growing proliferation of vehicles. Accidents frequently occur in our daily lives, and are the top ten causes of mortality from injuries globally. It is now an important component of the worldwide public health burden. Every year, an estimated 1.2 million people are killed in car accidents. Driver drowsiness and weariness are major contributors to traffic accidents this study relies on computer software and photographs, as well as a Convolutional Neural Network (CNN), to assess whether a motorist is tired. The Driver Drowsiness System is built on the MultiLayer Feed-Forward Network concept CNN was created using around 7,000 photos of eyes in both sleepiness and non-drowsiness phases with various face layouts. These photos were divided into two datasets: training (80% of the images) and testing (20% of the images). For training purposes, the pictures in the training dataset are fed into the network. To decrease information loss as much as feasible, backpropagation techniques and optimizers are applied. We developed an algorithm to calculate ROI as well as track and evaluate motor and visual impacts.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 2; 64--73
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki