Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "drowsiness detection" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Machine learning and artificial intelligence techniques for detecting driver drowsiness
Autorzy:
Prathap, Boppuru Rudra
Kumar, Kukatlapalli Pradeep
Hussain, Javid
Chowdary, Cherukuri Ravindranath
Powiązania:
https://bibliotekanauki.pl/articles/27314194.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
artificial intelligence
machine learning
drowsiness detection
image processing
convolutional neural networks
AI visuals
Opis:
The number of automobiles on the road grows in lockstep with the advancement of vehicle manufacturing. Road accidents appear to be on the rise, owing to this growing proliferation of vehicles. Accidents frequently occur in our daily lives, and are the top ten causes of mortality from injuries globally. It is now an important component of the worldwide public health burden. Every year, an estimated 1.2 million people are killed in car accidents. Driver drowsiness and weariness are major contributors to traffic accidents this study relies on computer software and photographs, as well as a Convolutional Neural Network (CNN), to assess whether a motorist is tired. The Driver Drowsiness System is built on the MultiLayer Feed-Forward Network concept CNN was created using around 7,000 photos of eyes in both sleepiness and non-drowsiness phases with various face layouts. These photos were divided into two datasets: training (80% of the images) and testing (20% of the images). For training purposes, the pictures in the training dataset are fed into the network. To decrease information loss as much as feasible, backpropagation techniques and optimizers are applied. We developed an algorithm to calculate ROI as well as track and evaluate motor and visual impacts.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 2; 64--73
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The vehicle driver safety prediction system
Autorzy:
Haller, Piotr
Wróbel, Radosław
Sierzputowski, Gustaw
Dimitrov, Radostin
Mihaylow, Veselin
Powiązania:
https://bibliotekanauki.pl/articles/2097644.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
safety
system
vehicles
drowsiness
face detection
bezpieczeństwo
pojazdy
senność
rozpoznawanie twarzy
Opis:
The article presents analysis of road crash accidents. It presents the evolution of safety systems, starting from a description of the currently used vehicle-based systems, with particular emphasis on the prediction of the driver falling asleep. The article also proposes a proprietary system of sleep prediction based on the face detection of drivers. The detection of facial landmarks is presented as a two-step process: an algorithm finds faces in general, and then needs to localize key facial structures within the face region of interest.
Źródło:
Combustion Engines; 2022, 61, 3; 11--17
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies