- Tytuł:
- Prediction of a Function of Misclassified Binary Data
- Autorzy:
- Al-Kandari, Noriah M.
- Powiązania:
- https://bibliotekanauki.pl/articles/973541.pdf
- Data publikacji:
- 2016
- Wydawca:
- Główny Urząd Statystyczny
- Tematy:
-
binary classification
double sampling
finite population sampling
misclassification
linkage error
sampling design - Opis:
- We consider the problem of predicting a function of misclassified binary variables. We make an interesting observation that the naive predictor, which ignores the misclassification errors, is unbiased even if the total misclassification error is high as long as the probabilities of false positives and false negatives are identical. Other than this case, the bias of the naive predictor depends on the misclassification distribution and the magnitude of the bias can be high in certain cases. We correct the bias of the naive predictor using a double sampling idea where both inaccurate and accurate measurements are taken on the binary variable for all the units of a sample drawn from the original data using a probability sampling scheme. Using this additional information and design-based sample survey theory, we derive a biascorrected predictor. We examine the cases where the new bias-corrected predictors can also improve over the naive predictor in terms of mean square error (MSE).
- Źródło:
-
Statistics in Transition new series; 2016, 17, 3; 429-448
1234-7655 - Pojawia się w:
- Statistics in Transition new series
- Dostawca treści:
- Biblioteka Nauki