Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "double geodetic number" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Double geodetic number of a graph
Autorzy:
Santhakumaran, A.
Jebaraj, T.
Powiązania:
https://bibliotekanauki.pl/articles/743673.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
weak-extreme vertex
double geodetic set
double geodetic number
Opis:
For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x,y in G there exist vertices u,v ∈ S such that x,y ∈ I[u,v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic of cardinality dg(G) is called dg-set of G. The double geodetic numbers of certain standard graphs are obtained. It is shown that for positive integers r,d such that r < d ≤ 2r and 3 ≤ a ≤ b there exists a connected graph G with rad G = r, diam G = d, g(G) = a and dg(G) = b. Also, it is proved that for integers n, d ≥ 2 and l such that 3 ≤ k ≤ l ≤ n and n-d-l+1 ≥ 0, there exists a graph G of order n diameter d, g(G) = k and dg(G) = l.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 1; 109-119
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The geodetic number of strong product graphs
Autorzy:
Santhakumaran, A.
Ullas Chandran, S.
Powiązania:
https://bibliotekanauki.pl/articles/744104.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
extreme vertex
extreme geodesic graph
open geodetic number
double domination number
Opis:
For two vertices u and v of a connected graph G, the set $I_G[u,v]$ consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets $I_G[u,v]$ for u,v ∈ S is denoted by $I_G[S]$. A set S ⊆ V(G) is a geodetic set if $I_G[S] = V(G)$ and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 4; 687-700
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies