Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dose optimization" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Dedicated computer software to radiation dose optimization for the staff performing nuclear medicine procedures
Autorzy:
Matusiak, K.
Kosek, J.
Powiązania:
https://bibliotekanauki.pl/articles/146774.pdf
Data publikacji:
2012
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
dose optimization
nuclear medicine
radiation protection
Opis:
Nuclear medicine techniques allow physicians to observe and diagnose physiology of chosen organs as well as the whole body of a patient. This visualization is possible not only because radioisotopes are applied, but there is also a significant progress in the computer software possibility. The advantage of the cooperation between medicine and informatics can be implemented in the radiation protection field of medical staff. The presented computer software, so-called Optimizer, was dedicated to the medical staff responsible for radiopharmaceutical preparation. It is known that the doses obtained in the nuclear medicine "hot labs" can be higher in comparison with the doses obtained by the rest of the personnel in the same department. The main advantage of the presented program is that the time needed for radiopharmaceutical preparation can be shortened and, as a result, the doses absorbed by personel can be reduced. The information of the volume containing planned radioactivity at the time of the application can significantly reduce the number of checking (volume and radioactivity), which normally takes place before the final handing over the radiopharmaceutical to the application. A user-friendly interface provides control at each step of the preparation protocol. For the convenience of medical staff all current examinations were coloured in one of the three colours : red (an application has to be done now), yellow (waiting) and green (done). The Optimizer was created for the Nuclear Medicine Department in the 5th Military Hospital in Kraków (Poland). What is more, currently it is successfully used and final TLD (thermoluminescent dosimetry) tests have been performed.
Źródło:
Nukleonika; 2012, 57, 4; 497-502
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles
Autorzy:
Ranjbar, H.
Shamsaei, M.
Ghasemi, M. R.
Powiązania:
https://bibliotekanauki.pl/articles/148638.pdf
Data publikacji:
2010
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
radiation therapy
energy optimization
dose enhancement factor
dose absorption
gold nanoparticles
MCNPX code
Opis:
The aim of radiotherapy is to maximize the dose applied to the tumor while keeping the dose to the surrounding healthy tissue as low as possible. To further enhance dose to a tumor, techniques to radiosensitization of the tumor, using high atomic number elements, have been proposed. The aim of this study was to investigate the influence of using gold nanoparticles as a contrast agent on tumor dose enhancement when the tissue is irradiated by a typical mono energy X-ray beam. To improve the conventional radiotherapy enhancement of the absorbed dose in a tumor tissue and to spare the skin and normal tissues during irradiation in the presence of concentration agent, a model based on a Monte Carlo N-Particle eXtended (MCNPX) computer code has been designed to simulate the depth dose in a phantom containing an assumed tumor. Test was carried out in two phases. In phase 1, verification of this model using the MCNPX was evaluated by comparing the obtained results with those of the published reports. In phase 2, gold was introduced into assumed tumor inside the phantom at different depths in the simulation program. Simulation was performed for four different concentrations of gold nanoparticles using a low mono-energetic parallel beam of synchrotron radiation. The obtained results show that the optimum energy for dose enhancement is found to be around 83–90 keV for all gold concentrations. The dose enhancement factor is increased linearly with concentration and diminished in depth along the central beam in the tumor. This approach of introducing contrast agents in conventional radiotherapy could hopefully prepare new treatment planning and improve the efficiency of tumor therapy.
Źródło:
Nukleonika; 2010, 55, 3; 307-312
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ALARA, czyli optymalizacja w ochronie radiologicznej – analiza dla Polski
ALARA, optimization in radiation protection – analysis for Poland
Autorzy:
Bugała, Ernest
Fornalski, Krzysztof W.
Powiązania:
https://bibliotekanauki.pl/articles/2055829.pdf
Data publikacji:
2021
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
ochrona radiologiczna
promieniowanie
optymalizacja
dawka
parametr α
radiation protection
radiation
optimization
dose
α parameter
Opis:
W niniejszym artykule skupiono się na ilościowym podejściu do opisanej w ustawie Prawo atomowe zasady optymalizacji, która jest implementacją międzynarodowej zasady ALARA, czyli redukcji narażenia na promieniowanie jonizujące do poziomu tak niskiego, jak jest to rozsądnie możliwe. W oparciu o praktyki międzynarodowe opisano kwestię wyznaczania parametru α (alfa) w ochronie radiologicznej dla Polski, który opisuje materialny koszt skutków napromienienia pojedynczej osoby dawką skuteczną jednego siwerta. Obliczenia zostały przeprowadzone dla trzech sposobów wyznaczania parametru α: metody PKB, metody bazującej na państwowo regulowanych odszkodowaniach oraz metody skłonności. Ostatecznie oszacowany dla Polski parametr alfa wynosi około 100 000 zł/Sv, co jest zgodne z praktykami międzynarodowymi. Obliczenia te przeprowadzono także dla różnych wariantów modelu ryzyka radiacyjnego: modelu liniowego (LNT), progowego oraz hormetycznego.
The following paper focuses on a quantitative approach to the described in the polish Atomic law optimization principle that is an implementation of an international ALARA principle which requires reducing exposition to ionizing radiation to levels that are as low as reasonably achievable. Basing on international practice, an issue of calculating the (alpha) parameter in radiation protection for Poland is raised, which describes material cost of exposing a single person to an effective dose of one sievert. The calculations are conducted for three methods of calculating the α parameter are presented: GDP method, method based on nationally regulated compensation and the willingness method. Estimated value of α parameter for Poland is about 100 000 PLN / Sv and corresponds with international practice. The calculations were conducted for different radiation risk models: linear non-threshold (LNT), threshold and hormetic.
Źródło:
Postępy Techniki Jądrowej; 2021, 4; 22--34
0551-6846
Pojawia się w:
Postępy Techniki Jądrowej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prostota czy złożoność procesu wytwarzania radiofarmaceutyków w świetle optymalizacji ochrony radiologicznej personelu – $ \text{}^\text{99m}\text{Tc} $ vs $ \text{}^\text{18}\text{F} $
Simplicity or complexity of the radiopharmaceutical production process in the light of optimization of radiation protection of staff – $ \text{}^\text{99m}\text{Tc} $ vs $ \text{}^\text{18}\text{F} $
Autorzy:
Wrzesień, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2162470.pdf
Data publikacji:
2018-05-22
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
medycyna nuklearna
detektor termoluminescencyjny
optymalizacja
radiofarmaceutyk
izotop
dawka równoważna
nuclear medicine
thermoluminescent detector
optimization
radiopharmaceutical
isotope
equivalent dose
Opis:
Wstęp Radiofarmaceutyk to produkt będący połączeniem niepromieniotwórczego związku chemicznego i znacznika izotopowego. Na bogatej liście izotopów mających zastosowane w medycynie na uwagę zasługują 2 – technet-99m ($ \text{}^\text{99m}\text{Tc} $) i fluor-18 ($ \text{}^\text{18}\text{F} $). Ich podobieństwo ogranicza się jedynie do diagnostycznego obszaru stosowalności, a dzieli je m.in. rodzaj i energia emitowanego promieniowania, czas połowicznego rozpadu czy w szczególności sposób produkcji. Izotop $ \text{}^\text{99m}\text{Tc} $ uzyskuje się dzięki generatorom nuklidów krótkożyciowych – molibdenu-99 ($ \text{}^\text{99}\text{Mo} $)/$ \text{}^\text{99m}\text{Tc} $, a $ \text{}^\text{18}\text{F} $ powstaje w reakcji jądrowej zachodzącej w cyklotronie. Stosunkowo łatwy sposób obsługi generatora $ \text{}^\text{99}\text{Mo} $/$ \text{}^\text{99m}\text{Tc} $ w porównaniu z koniecznością wykorzystania cyklotronu wydaje się sprzyjać zasadzie optymalizacji ochrony radiologicznej personelu. Weryfikacja tezy dotyczącej wpływu automatyki zarówno produkcji znacznika $ \text{}^\text{18}\text{F} $, jak i procesu znakowania deoksyglukozy na zoptymalizowanie ochrony radiologicznej pracowników w porównaniu z manualnymi procedurami wykonywanymi podczas znakowania preparatów izotopem $ \text{}^\text{99m}\text{Tc} $. Materiał i metody Dawki równoważne Hp(0,07) zmierzono w 5 zakładach medycyny nuklearnej i 2 ośrodkach produkujących znaczniki pozytonowe, w szczególności $ \text{}^\text{18}\text{F} $. W pomiarach dozymetrycznych wykorzystano wysokoczułe detektory termoluminescencyjne wykonane z fluorku litu (LiF: Mg, Cu, P – MCP-N). Wyniki Wśród czynności wykonywanych przez pracowników zarówno placówek produkujących $ \text{}^\text{18}\text{F} $-fluorodeoksyglukozę ($ \text{}^\text{18}\text{F} $-FDG), jak i zakładów medycyny nuklearnej manualne procedury kontroli jakości oraz znakowanie preparatu mają największy wkład do zarejestrowanych wartości dawek Hp(0,07). Wnioski Prosty sposób uzyskania znacznika $ \text{}^\text{99m}\text{Tc} $ podobnie jak złożony (choć w pełni zautomatyzowany) proces produkcji $ \text{}^\text{18}\text{F} $-FDG optymalizuje ochronę radiologiczną personelu z wyłączeniem manualnych procesów znakowania związków chemicznych $ \text{}^\text{99m}\text{Tc} $ bądź kontroli jakości $ \text{}^\text{18}\text{F} $-FDG. Med. Pr. 2018;69(3):317–327
Background A radiopharmaceutical is a combination of a non-radioactive compound with a radioactive isotope. Two isotopes: technetium- 99m ($ \text{}^\text{99m}\text{Tc} $) and fluorine-18 ($ \text{}^\text{18}\text{F} $) are worth mentioning on the rich list of isotopes which have found numerous medical applications. Their similarity is limited only to the diagnostic area of applicability. The type and the energy of emitted radiation, the half-life and, in particular, the production method demonstrate their diversity. The $ \text{}^\text{99m}\text{Tc} $ isotope is produced by a short-lived nuclide generator – molybdenum-99 ($ \text{}^\text{99}\text{Mo} $)/$ \text{}^\text{99m}\text{Tc} $, while $ \text{}^\text{18}\text{F} $ is resulting from nuclear reaction occurring in a cyclotron. A relatively simple and easy handling of the $ \text{}^\text{99}\text{Mo} $ \text{}^\text{99m}\text{Tc} $ generator, compared to the necessary use a cyclotron, seems to favor the principle of optimizing the radiological protection of personnel. The thesis on the effect of automation of both the $ \text{}^\text{18}\text{F} $ isotope production and the deoxyglucose labelling process on the optimization of radiological protection of workers compared to manual procedures during handling of radiopharmaceuticals labelled with $ \text{}^\text{99m}\text{Tc} $ need to be verified. Material and Methods Measurements of personal dose equivalent Hp(0.07) were made in 5 nuclear medicine departments and 2 radiopharmaceuticals production centers. High-sensitivity thermoluminescent detectors (LiF: Mg, Cu, P – MCP-N) were used to determine the doses. Results Among the activities performed by employees of both $ \text{}^\text{18}\text{F} $-fluorodeoxyglucose ($ \text{}^\text{18}\text{F} $-FDG) production centers and nuclear medicine departments, the manual quality control procedures and labelling of radiopharmaceuticals with $ \text{}^\text{99m}\text{Tc} $ isotope manifest the greatest contribution to the recorded Hp(0.07). Conclusions The simplicity of obtaining the $ \text{}^\text{99m}\text{Tc} $ isotope as well as the complex, but fully automated production process of the $ \text{}^\text{18}\text{F} $-FDG radiopharmaceutical optimize the radiation protection of workers, excluding manual procedures labelling with $ \text{}^\text{99m}\text{Tc} $ or quality control of $ \text{}^\text{18}\text{F} $-FDG. Med Pr 2018;69(3):317–327
Źródło:
Medycyna Pracy; 2018, 69, 3; 317-327
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies