Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dominated best approximation problem" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Geometric properties of Orlicz spaces equipped with \(p\)-Amemiya norms − results and open questions
Autorzy:
Wisła, Marek
Powiązania:
https://bibliotekanauki.pl/articles/746287.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
rotundity
non-squareness
uniform monotonicity
dominated best approximation problem
Amemiya type norm
Opis:
The classical Orlicz and Luxemburg norms generated by an Orlicz function \(\Phi\) can be defined with the use of the Amemiya formula [H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. 11 (2000), no. 4, 573-585]. Moreover, in this article Hudzik and Maligranda suggested investigating a family of p-Amemiya norms defined by the formula \(\|x\|_{\Phi,p}=\inf_{k>0} \frac{1}{k} (1+I_\Phi^p(kx))^{1/p}\), where \(1\le p\le\infty\) (under the convention: \((1+u^\infty)^{1/\infty}=\lim_{p\to\infty}(1+u^p)^{1/p}=\max{1,u}\) for all \(u\ge 0\)). Based on this idea, a number of papers have been published in the past few years. In this paper, we present some major results concerning the geometric properties of Orlicz spaces equipped with p-Amemiya norms. In the last section, a more general case of Amemiya type norms is investigated. A few open questions concerning this theory will be stated as well.
Źródło:
Commentationes Mathematicae; 2015, 55, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies