Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "differential networks" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Noise Characterization of Differential Multi-Element Multiport Networks : the Wave Approach
Autorzy:
Dobrowolski, J. A.
Powiązania:
https://bibliotekanauki.pl/articles/226146.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
differential networks
differential noise figure
noise waves
noise correlation matrix
Opis:
In this paper there is presented and discussed a general analysis method for noise characterization of noisy multi-element multiport differential networks. It is based on mixed mode, differential and common mode, noise waves representation of noise, generalized mixed-mode scattering parameters and generalized mixed-mode noise wave correlation parameters for the network. There are derived analytical relation between the noise figure for a given output port and the noise matrix and the scattering parameters of the network, as well as the correlations between the input port noise waves. The signal to noise ratio degradation factor is derived and discussed, too. Presented results can be implemented directly in a CAD software for noise analysis of differential microwave multi-element multiport networks with differential as well as with conventional single ended ports.
Źródło:
International Journal of Electronics and Telecommunications; 2015, 61, 4; 395-401
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Noise Analysis of Differential Multiport Networks : the Wave Approach
Autorzy:
Dobrowolski, J. A.
Powiązania:
https://bibliotekanauki.pl/articles/226027.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
differential networks
noise analysis
noise waves
noise correlation matrix
differential noise figure
Opis:
In this paper there is presented and discussed a general analysis method for noise characterization of noisy multiport differential networks. It is based on mixed mode, differential and common mode, noise waves representation of noise, generalized mixed-mode scattering parameters and generalized mixed-mode noise wave correlation parameters for the network. There are derived analytical relation between the noise figure for a given output port and the noise matrix and the scattering parameters of the network, as well as the correlations between the input port noise waves. The signal to noise ratio degradation factor is derived and discussed, too. Presented results can be implemented directly in a CAD software noise analysis of differential microwave multiport networks with differential as well as with conventional single ended ports.
Źródło:
International Journal of Electronics and Telecommunications; 2014, 60, 4; 281-286
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Training neural networks with a hybrid differential evolution algorithm
Uczenie sieci neuronowych hybrydowym algorytmem opartym na differential evolution
Autorzy:
Bandurski, K.
Kwedlo, W.
Powiązania:
https://bibliotekanauki.pl/articles/341051.pdf
Data publikacji:
2009
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sieci neuronowe
differential evolution
gradienty sprzężone
minima lokalne
neural networks
conjugate gradients
local minima
Opis:
A new hybrid method for feed forward neural network training, which combines differential evolution algorithm with a gradient-based approach is proposed. In the method, after each generation of differential evolution, a number of iterations of the conjugate gradient optimization algorithm is applied to each new solution created by the mutation and crossover operators. The experimental results show, that in comparison to the standard differential evolution the hybrid algorithm converges faster. Although this convergence is slower than that of classical gradient based methods, the hybrid algorithm has significantly better capability of avoiding local optima.
W artykule przedstawiono nową, hybrydową metodę uczenia sieci neuronowych, łączącą w sobie algorytm Differential Evolution z podejściem gradientowym. W nowej metodzie po każdej generacji algorytmu Differential Evolution, każde nowe rozwiązanie, powstałe w wyniu działania operatorów krzyżowania i mutacji, poddawane jest kilku iteracjom algorytmu optymalizacji wykorzystującego metodę gradientów sprzężonych.Wyniki eksperymentów wskazują, że nowy, hybrydowy algorytm ma szybszą zbieżność niż standardowy algorytm Differential Evolution. Mimo, iż zbieżność ta jest wolniejsza, niż w przypadku klasycznych metod gradientowych, algorytm hybrydowy potrafi znacznie lepiej unikać minimów lokalnych.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2009, 4; 5-17
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting
Autorzy:
Bas, E.
Powiązania:
https://bibliotekanauki.pl/articles/91575.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
artificial neural networks
multiplicative neuron model
differential evolution
algorithm
forecasting
sztuczne sieci neuronowe
algorytm
prognozowanie
Opis:
In recent years, artificial neural networks have been commonly used for time series forecasting by researchers from various fields. There are some types of artificial neural networks and feed forward artificial neural networks model is one of them. Although feed forward artificial neural networks gives successful forecasting results they have a basic problem. This problem is architecture selection problem. In order to eliminate this problem, Yadav et al. (2007) proposed multiplicative neuron model artificial neural network. In this study, differential evolution algorithm is proposed for the training of multiplicative neuron model for forecasting. The proposed method is applied to two well-known different real world time series data.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 1; 5-11
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonstationary analysis of a queueing network with positive and negative messages
Autorzy:
Matalytski, M.
Naumenko, V.
Powiązania:
https://bibliotekanauki.pl/articles/122613.pdf
Data publikacji:
2013
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
information systems
telecommunications systems
information networks
telecommunications networks
virus
open G-network with negative messages
transient behavior
system of difference-differential equations
probability states
generating function
Opis:
This paper contains an investigation of an open queueing network with positive and negative messages that can be used to model the behavior of viruses in information and telecommunication systems and networks. The purpose of research is investigation of such a network at the transient behavior. We consider the case when the intensity of the incoming flow of positive and negative messages and service intensity of messages do not depend on time. It is assumed that all queueing systems of network are one-line. We obtained a system difference-differential equations for the state probabilities of the network. To find the state probabilities of the network in the transitional behavior applied a methodology based on the use of the apparatus of multidimensional generating functions. We obtained an expression for generating function. An example is calculated.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2013, 12, 2; 61-71
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
Autorzy:
Borzyszkowski, Bartłomiej
Damaszke, Karol
Romankiewicz, Jakub
Świniarski, Marcin
Moszyński, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2086847.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
physics-guided neural networks
spatial analysis
differential equations
machine learning
sieci neuronowe
fizyka
analiza przestrzenna
równania różniczkowe
uczenie maszynowe
Opis:
Numerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending its cost function by a relationship directly inspired by the physical formula. This publication explains the concept of Physics-guided neural networks (PGNN), makes an overview of already proposed solutions in the field and describes possibilities of implementing physics-based loss functions for spatial analysis. Our approach shows that the model predictions are not only optimal but also scientifically consistent with domain specific equations. Furthermore, we present two applications of PGNNs and illustrate their advantages in theory by solving Poisson’s and Burger’s partial differential equations. The proposed formulas describe various real-world processes and have numerous applications in the area of applied mathematics. Eventually, the usage of scientific knowledge contained in the tailored cost functions shows that our methods guarantee physics-consistent results as well as better generalizability of the model compared to classical, artificial neural networks.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e139391, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies