Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "difference graph" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Difference labelling of cacti
Autorzy:
Sonntag, Martin
Powiązania:
https://bibliotekanauki.pl/articles/743380.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labelling
difference graph
cactus
Opis:
A graph G is a difference graph iff there exists S ⊂ IN⁺ such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = {{i,j}:i,j ∈ V ∧ |i-j| ∈ V}.
It is known that trees, cycles, complete graphs, the complete bipartite graphs $K_{n,n}$ and $K_{n,n-1}$, pyramids and n-sided prisms (n ≥ 4) are difference graphs (cf. [4]). Giving a special labelling algorithm, we prove that cacti with a girth of at least 6 are difference graphs, too.
Źródło:
Discussiones Mathematicae Graph Theory; 2003, 23, 1; 55-65
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference labelling of digraphs
Autorzy:
Sonntag, Martin
Powiązania:
https://bibliotekanauki.pl/articles/744591.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labelling
difference digraph
oriented tree
Opis:
A digraph G is a difference digraph iff there exists an S ⊂ N⁺ such that G is isomorphic to the digraph DD(S) = (V,A), where V = S and A = {(i,j):i,j ∈ V ∧ i-j ∈ V}.For some classes of digraphs, e.g. alternating trees, oriented cycles, tournaments etc., it is known, under which conditions these digraphs are difference digraphs (cf. [5]). We generalize the so-called source-join (a construction principle to obtain a new difference digraph from two given ones (cf. [5])) and construct a difference labelling for the source-join of an even number of difference digraphs. As an application we obtain a sufficient condition guaranteeing that certain (non-alternating) trees are difference digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 3; 509-527
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge Reduced Skolem Difference Mean Number of Some Graphs
Autorzy:
Murugan, K.
Powiązania:
https://bibliotekanauki.pl/articles/1192710.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Skolem difference mean graph
edge reduced skolem difference mean number
skolem difference mean labeling
some graphs
Opis:
A graph G =(V,E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices x ϵ V with distinct elements f (x) from {1,2,3,…,p+q} in such a way that the edge e =uv is labeled with |f(u)-f(v)|/2 if |f(u)-f(v)| is even and (|f(u)-f(v)|+1)/2 if |f(u)-f(v)| is odd and the resulting labels of the edges are distinct and are from {1,2,3,…,q}. A graph that admits skolem difference mean labeling is called a skolem difference mean graph. In this paper, the author studied the edge reduced skolem difference mean number of some graphs.
Źródło:
World Scientific News; 2016, 30; 129-142
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generating Skolem Difference Mean Graphs
Autorzy:
Mariselvi, S.
Murugan, K.
Powiązania:
https://bibliotekanauki.pl/articles/1075422.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Duplication of graph elements
Near skolem difference mean graphs
Skolem difference mean graphs
Opis:
A graph G (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices x V with distinct elements f(x) from {1,2,….,p+q} in such a way that the edge e = uv is labeledwith |f(u)-f(v)|/2 if |f(u)-f(v)| is even and (|f(u)-f(v)|+1)/2 if |f(u)-f(v)| is odd and the resulting edges get distinct labels from {1,2,…,q}. A graph that admits skolem difference mean labeling is called a Skolem difference mean graph A graph G = (V, E) with p vertices and q edges is said to have Near skolem difference mean labeling if it is possible to label the vertices x V with distinct elements f(x) from {1,2,….,p+q-1,p+q+2} in such a way that each edge e = uv, is labeled as f*(e) = |f(u)-f(v)|/2 if |f(u)-f(v)| is even and f*(e) =(|f(u)-f(v)|+1)/2 if |f(u)-f(v)| is odd. The resulting labels of the edges are distinct and from {1,2,…,q}. A graph that admits a Near skolem difference mean labeling is called a Near Skolem difference mean graph. In this paper, the authors generate skolem difference mean graphs from near skolem difference mean graphs.
Źródło:
World Scientific News; 2019, 126; 11-22
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Smallest Non-Autograph
Autorzy:
Baumer, Benjamin S.
Wei, Yijin
Bloom, Gary S.
Powiązania:
https://bibliotekanauki.pl/articles/31340873.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labeling
difference graphs
autographs
monographs
Opis:
Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this paper, we identify the smallest non-autograph: a graph with 6 vertices and 11 edges. Furthermore, we demonstrate that the infinite family of graphs on n vertices consisting of the complement of two non-intersecting cycles contains only non-autographs for n ≥ 8.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 577-602
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies