Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "detonation" wg kryterium: Temat


Tytuł:
The Role of Product Composition in Determining Detonation Velocity and Detonation Pressure
Autorzy:
Politzer, P.
Murray, J. S.
Powiązania:
https://bibliotekanauki.pl/articles/358258.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
detonation velocity
detonation pressure
density
detonation product composition
detonation heat release
Opis:
Four sets of rules for predicting the detonation product compositions of explosives have been investigated: the Kamlet-Jacobs, the KistiakowskyWilson, the modified Kistiakowsky-Wilson and the Springall-Roberts. These can result, for a given compound, in significantly differing detonation products and amounts of heat release. However the resulting detonation velocities D and detonation pressures P obtained for the compound using the Kamlet-Jacobs equations are generally quite similar, with the Kamlet-Jacobs rules leading to the D and P that are, on average, closest to the experimental. The fact that the variations among the D and P values are relatively small can be attributed to a balancing of opposing effects relating to the quantities of gaseous products and the heat releases. Accordingly, obtaining reasonable accuracy for D and P does not necessarily imply corresponding accuracy for the product composition and heat release that were used. The analysis presented explains the observations that D and P can be correlated with loading density alone, even though product compositions are known to change with density.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 4; 459-474
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detonation engines
Autorzy:
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/950134.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
detonation engines
detonation
PDE
RDE
Opis:
In this paper survey of jet engines based on detonation combustion is provided. After short historical view, basic schemes of engines utilizing detonation are described. Possible improvement of propulsion efficiency due to detonative combustion which results in pressure increase is presented and comparison of deflagrative and detonative combustion is discussed. Detailed description of Pulsed Detonation Engines (PDE) as well as Rotating Detonation Engines (RDE) is given. Also basic principle of engine utilizing Standing Detonation is provided. Special attention is given to RDE, since rotating detonation can be applied to all kind of jet engines including, turbine, ramjet and rocket engines. Basic research of rotating detonation in cylindrical chambers for hydrogen-air mixtures is presented. A typical pressure record for experiments carried out in laboratory conditions is given. Schematic diagrams of turbofan engines are compared to classical ones and advantages and disadvantages of application of rotating detonation to these engines is discussed. For ramjet engines, schematic diagram of engine operation is depictured. Special attention is given to the rocket engines utilizing rotating detonation. Experimental research of small models of rockets engines with aerospike nozzle is presented. Test of such engines were carried out for gaseous fuels, such as: hydrogen, methane, ethane and propane with gaseous oxygen. Measurements of pressure and thrust are presented. Finally, possible configuration and applications of combine cycle rocket-ramjet engine utilizing rotating detonation is discussed.
Źródło:
Journal of KONES; 2011, 18, 3; 515-521
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detonation Performance of Four Groups of Aluminized Explosives
Autorzy:
Xiang, D.-L.
Rong, J.-L.
He, X.
Powiązania:
https://bibliotekanauki.pl/articles/358148.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
aluminized explosive
detonation pressure
detonation velocity
heat of detonation
KHT code
Opis:
The detonation performances of TNT-, RDX-, HMX-, and RDX/AP-based aluminized explosives were examined through detonation experiments. The detonation pressure, velocity, and heat of detonation of the four groups of aluminized explosives were measured. Reliability verification was conducted for the experimental results and for those calculated with an empirical formula and the KHT code. The test results on detonation pressures and velocities were in good agreement with the predicted values when aluminum (Al) particles were considered inert. The experimental heat of detonation values exhibited good consistency with the predicted values when a certain proportion of Al particles was active. Ammonium perchlorate (AP) can effectively reduce the detonation pressure and improve the heat of detonation for the RDX/AP-based aluminized explosive. A comparison of the current test results and literature data shows that errors may exist in early test data. The test data presented in this study allow for an improved understanding of the detonation performance of the four groups of aluminized explosives.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 4; 903-915
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of Thermochemical and Explosive Characteristics of Furoxanes
Autorzy:
Zhukov, I.
Kozak, G. D.
Powiązania:
https://bibliotekanauki.pl/articles/358541.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
furoxanes
benzofuroxanes
high-power energetic materials
heat of detonation
detonation velocity
detonation pressure
Opis:
Search of high-power energetic materials is one primary line of development of chemical physics of combustion and explosion. Yield of such materials is usually very small, and its cost is very high. Calculation of unknown characteristics and properties is the only way out from this situation. There are different methods today that allow calculating unknown detonation performance and some of physicochemical properties. Examination of calculated detonation performance of furoxanes and benzofuroxanes compounds that are not enough investigated is presented in this work. These compounds are new high-power energetic materials. Influence of error in enthalpy of formation of these compounds on their detonation performance is also examined in this work. Furoxanes plays particular part among energetic materials. They are convenient blocks of molecules of high-power energetic materials. Joining of explosiphorus clusters of atoms are lead to obtaining of number of high-performance compounds. It is caused by flatten structure of furoxane ring, that lead to high density of compounds and are characterized by high and positive value of enthalpy of formation. Detonation performance of furoxanes was not study practically. That is why 10 furoxanes have been chosen as object of study (see Nomenclature). 7 of 10 studied furoxanes have anomalous elemental composition, because they are hydrogenfree. In order to evaluate possible error in computational detonation performance, explosive characteristics of 6 hydrogen-free energetic materials with known experimental data have been calculated.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 3-4; 45-54
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The study of the continuously rotating detonation combustion chamber supplied with different types of fuel
Autorzy:
Łukasik, B.
Czyż, S.
Irzycki, A.
Rowiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/246684.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
rotating detonation
air/Jet-A detonation
detonation combustion chamber
internal combustion engine
Opis:
The paper summarizes research that was conducted last year as part of the project of “Turbine engine with detonation combustion chamber”. In this project, throughout 2012 and early 2013, tests were carried out on a test stand connected to the compressed air system. Research, of the rotating detonation phenomena, was carried out for a number of detonation chambers with different interior channel geometry. In addition, for each geometry configuration, tests were carried out for different levels of choking of the chamber outlet and hence for different pressures conditions inside the detonation chamber. This article presents the results of tests carried out for gaseous (hydrogen), hybrid (hydrogen + kerosene) and liquid (Jet-A) fuels, using different types of fuel injectors and for different fuel injection configuration settings (inside the chamber, or in front of the chamber). During these tests, parameters such as pressure behind the detonation wave (using piezoelectric sensors), the static pressure in front of and inside the detonation chamber and temperature: before, inside and at the outlet of the chamber, were measured. Research was performed for the various mass flow rates of air and fuel injected into the chamber that means for the different air-fuel equivalence ratios (Lambda). The main achievement of this study was to obtain a stable and reproducible rotating detonation of air and heated kerosene (Jet-A) mixture, thus the results presented in this paper presents mainly these tests as the most interesting to the reader
Źródło:
Journal of KONES; 2013, 20, 3; 259-266
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds
Autorzy:
Politzer, P.
Murray, J. S.
Powiązania:
https://bibliotekanauki.pl/articles/358498.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
detonation velocity
detonation pressure
density
enthalpy of formation
detonation product composition
explosives
Opis:
We have explored various aspects of the Kamlet-Jacobs equations for estimating detonation velocities and pressures. While the loading density of the explosive compound is certainly an important determinant of these properties, its effect can sometimes be overridden by other factors, such as the detonation heat release and/or the number of moles of gaseous products. Using a gas phase rather than solid phase enthalpy of formation in obtaining a compound's heat release can produce a signifcant error in the calculated detonation velocity. However a negative enthalpy of formation is not necessarily incompatible with excellent detonation properties. Additional evidence is presented to support Kamlet and Jacobs' conclusion that, for C, H, N, O explosives, assuming the detonation product composition to be N2(g)/H2O(g)/CO2(g)/C(s) gives overall quite satisfactory results.
Źródło:
Central European Journal of Energetic Materials; 2011, 8, 3; 209-220
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders
Autorzy:
Zhang, Q.
Chang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358334.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
aluminized explosives
detonation pressure
nonideal explosives
detonation velocity
Opis:
The data reported shows that the Chapman-Jouguet (CJ) detonation parameters of non-ideal explosives calculated from existing thermodynamic computer codes are significantly different from experimental results. We use CJ detonation theory to present a new approach predicting detonation pressure and velocity of aluminized explosives by thermodynamic detonation theory. There is no need to use the assumption of full and partial equilibrium of aluminum powder in reaction zones in the new approach. In this work the best agreement with experimental data was obtained by adjusting the parameter k in the Becker- Kistiakosky-Wilson equations of state (BKW-EOS). The detonation pressure and velocity values calculated by the present method agree well with the experimental results. All of the deviations for the calculated pressures of aluminized explosives are less than 9% and those for the detonation velocities are less than 7%.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 1; 77-86
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Detonator Shell Materials on Detonation Calorimetry Results
Autorzy:
Němec, Ondřej
Musil, Tomáš
Künzel, Martin
Powiązania:
https://bibliotekanauki.pl/articles/1062738.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
detonation calorimetry
detonator
PETN
heat of detonation
bomb calorimetry
Opis:
Detonation calorimetry is a method for the determination of the heat released by the detonation of an explosive charge. Compared to classical combustion calorimetry, detonation calorimetry requires an inert atmosphere, a large sample mass and a detonator for its initiation. This detonator releases some energy for which the results must be corrected. Four types of detonator have been tested in the calorimeter alone and also in combination with explosive charges of PETN. It was found that the aluminium shell of the detonator considerably increases the apparent heat of detonation of the PETN samples in a vacuum, while the presence of combustible (polymeric) components has the opposite effect. Pressurization of the calorimetric vessel with nitrogen gas only partially suppresses these effects. The preferred technique is to use copper or glass confinement in a high pressure inert atmosphere.
Źródło:
Central European Journal of Energetic Materials; 2020, 17, 4; 552-565
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detonation Parameters of PlSEM Plastic Explosive
Autorzy:
Cardoso, Aline Anastacio
Selesovsky, Jakub
Künzel, Martin
Kucera, Jindrich
Pachman, Jiri
Powiązania:
https://bibliotekanauki.pl/articles/358518.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
Detonation velocity
PlSEM
plastic explosive
detonation pressure
cylinder test
Opis:
PlSEM is a plastic explosive based on RDX, PETN and a non-explosive binder, and is used in linear shaped charges for demolition purposes. Its experimentally obtained detonation parameters are presented in the present paper. The detonation velocity was measured for cylindrical charges of various diameters, with and without confinement. The detonation pressure and particle velocity were determined using an impedance window matching technique, and cylinder tests were used to obtain the parameters of the JWL equation of state of the detonation products. Detonation velocities from 7.75 to 8.05 km·s–1 were obtained for unconfined charges with diameters from 4 to 8 mm, and from 8.15 to 8.24 km·s–1 for charges with 25 mm diameter. The experimentally determined detonation pressure was found to be 24.6 GPa.
Źródło:
Central European Journal of Energetic Materials; 2019, 16, 4; 487-503
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on the Detonation Parameters of Aluminized Explosives Based on a Disequilibrium Multiphase Model
Autorzy:
Pei, H.
Nie, J.
Jiao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/358535.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nonideal explosives
velocity of detonation
detonation pressure
relaxation timescale
Opis:
Detonation models are usually based on the classical Euler equations of gas dynamics under the assumption of thermodynamic equilibrium. However reported data show the Chapman-Jouguet (CJ) detonation parameters of nonideal explosives based on thermodynamic equilibrium codes are significantly different from experimental results. Based on the conventional CJ model, a new multiphase flow model, not in thermal equilibrium, was considered in this study. This approach was applied to compute the velocity of detonation for several aluminized explosives. The predictions are better than the CJ equilibrium model and are in excellent agreement with experimental data. All of the deviations for the velocity of detonation (VOD) are less than 4%.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 4; 491-500
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The contribution of A.K. Oppenheim to explaning the nature of the initiation of gaseous detonation in tubes
Autorzy:
Kuhl, Allen L.
Hayashi, Antoni Koichi
Wolański, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/36455676.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
boundary layer
ignition detonation initiation
combustion
explosion in the explosion
detonation
deflagration-detonation transition
DDT
Opis:
This paper analyzes A.K. Oppenheim’s original works on the transition of deflagration to detonation and reviews them from the perspective of new numerical and experimental results recently obtained on such phenomena. Particular attention is focused on processes happening in the boundary layer of the tube walls ahead of the accelerating flame. The results of the theoretical analyses of temperature variations inside developing boundary layer are presented and compared to the temperature variation in a free stream away from the boundary layer. Analyses of temperature increase in such layers clearly indicate that the self-ignition of the mixture happens in the boundary layer ahead of the propagating flame front. New experimental results obtained recently by a research group from the A. V. Luikov Heat and Mass Transfer Institute in Minsk, Belarus, combined with previously conducted theoretical analyses and numerical simulations, show clearly and unambiguously that the origin of the “explosion in the explosion”, postulated by A. K. Oppenheim in 1966, is always responsible for the Deflagration-Detonation Transition (DDT) in gases and is located in the boundary layer ahead of the accelerating flame front.
Źródło:
Transactions on Aerospace Research; 2022, 2 (267); 1-12
0509-6669
2545-2835
Pojawia się w:
Transactions on Aerospace Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detonation Characteristics of Gaseous Isopropyl Nitrate at High Concentrations
Autorzy:
Zeng, Linghui
Liang, Huimin
Zhang, Qi
Powiązania:
https://bibliotekanauki.pl/articles/27788043.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
isopropyl nitrate
detonation properties
detonation products
fuel-rich
numerical simulation
Opis:
Isopropyl nitrate (IPN) is a component of propellant fuel. High concentrations of IPN can still produce detonation. To date, very limited literature is available regarding high concentrations of IPN detonations. The detonation pressure is related to the equivalence ratio and density of IPN/air mixtures. These two factors have opposing effects on the detonation of an IPN/air mixture. The detonation characteristics of gaseous IPN/air mixtures at high concentrations (300-4000 g/m3) have been studied numerically. The results showed that when the IPN concentration is 300-600 g/m3, density played a dominant role on detonation. The maximum detonation pressure, 2.81 MPa, and the maximum detonation velocity, 1890 m/s, occurred at a concentration of 600 g/m3 (equivalence ratio Φ = 2.15). When the IPN concentration was increased from 300 to 600 g/m3, the peak overpressure and velocity increased by 19.6% and 6.2%, respectively. When the IPN concentration is higher than 600 g/m3, the equivalence ratio is extremely large and the detonation properties were seriously degraded. An analysis of the detonation products illustrated the burn-off rate of high concentrations of IPN and the influence of the detonation product CH3CHO. At a concentration of 600 g/m3, the IPN/air mixture can achieve optimal detonation properties and fuel economy.
Źródło:
Central European Journal of Energetic Materials; 2021, 18, 2; 245--270
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of the continuously rotating detonation to combustion engines at the Łukasiewicz - Institute of Aviation
Autorzy:
Kawalec, Michał
Perkowski, Witold
Łukasik, Borys
Bilar, Adam
Wolański, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2202517.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
detonation
detonation engines
rotating detonation engine
RDE
experimental rocket
detonacja
silniki detonacyjne
obrotowe silniki detonacyjne
rakieta eksperymentalna
Opis:
In the paper short information about advantages of introduction of detonation combustion to propulsion systems is briefly discussed and then research conducted at the Łukasiewicz - Institute of Aviation on development of the rotating detonation engines (RDE) is presented. Special attention is focused on continuously rotating detonation (CRD), since it offers significant advantages over pulsed detonation (PD). Basic aspects of initiation and stability of the CRD are discussed. Examples of applications of the CRD to gas turbine and rocket engines are presented and a combine cycle engine utilizing CRD are also evaluated. The world's first rocket flight powered by liquid propellant detonation engine is also described.
Źródło:
Combustion Engines; 2022, 61, 4; 51--57
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitro Groups vs. N-Oxide Linkages: Effects Upon Some Key Determinants of Detonation Performance
Autorzy:
Politzer, P.
Murray, J. S.
Powiązania:
https://bibliotekanauki.pl/articles/358223.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
C,H,N,O explosives
detonation velocity
detonation pressure
N-oxides
polyazines
polyazoles
detonation heat release
crystal density
heats of formation
gaseous detonation products
Opis:
Increasing the nitrogen/carbon ratios in the molecular frameworks of C,H,N,O explosives has attracted considerable attention because it tends to result in more positive heats of formation and often greater densities. In conjunction with this, there has been a growing interest in N-oxide linkages, N+ → O−, as another source of oxygen in these compounds, in addition to or even possibly replacing NO2 groups. In this study, for a series of polyazines and polyazoles, we have compared the effects of introducing a single N-oxide linkage or NO2 group upon key properties that affect detonation velocity and detonation pressure. We found that: (1) The heats of formation per gram of compound, which is what is relevant for this purpose, are almost always higher for the N-oxides. (2) The nitro derivatives have greater densities and detonation heat releases. In relation to the latter, it must be kept in mind that increasing detonation heat release tends to be accompanied by increasing sensitivity. (3) The N-oxides produce more moles of gaseous detonation products per gram of compound.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 1; 3-25
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular Dynamics Study of Vibrational Nonequilibrium in Detonation of Polyatomic Liquids
Autorzy:
Smirnov, A. L.
Dremin, A. N.
Powiązania:
https://bibliotekanauki.pl/articles/358863.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
molecular dynamics
detonation
Opis:
Energy transfer mechanisms to internal molecular degrees of freedom in shock and detonation waves in polyatomic liquids are investigated. The proposed approach uses a new version of the method of nonequilibrium molecular dynamics based on the simplest model potential energy surfaces of reacting polyatomic molecules. The main feature is adaptation of some results and approaches of gas theory to liquids. It is shown that vibrational nonequilibrium is produced by shock compression and influences on chemical reactions. So, the structure of shock and detonation waves depends strongly on the peculiarities of vibrational spectra and the structure of normal modes of compounds. Numerical simulations have been carried out for steady state detonation waves and processes of initiation of detonation by shock waves or by local heating. The results demonstrate different shock wave chemistry for substances of almost identical behaviour at static conditions.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 1; 63-74
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies