Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dense $G_{δ}$" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
Autorzy:
Pułka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/729906.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Markov operator
asymptotic stability
residuality
dense $G_{δ}$
Opis:
We study different types of asymptotic behaviour in the set of (infinite dimensional) nonhomogeneous chains of stochastic operators acting on L¹(μ) spaces. In order to examine its structure we consider different norm and strong operator topologies. To describe the nature of the set of nonhomogeneous chains of Markov operators with a particular limit behaviour we use the category theorem of Baire. We show that the geometric structure of the set of those stochastic operators which have asymptotically stationary density differs depending on the considered topologies.
Źródło:
Discussiones Mathematicae Probability and Statistics; 2012, 32, 1-2; 17-33
1509-9423
Pojawia się w:
Discussiones Mathematicae Probability and Statistics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Imposing psendocompact group topologies on Abeliau groups
Autorzy:
Comfort, W.
Remus, I.
Powiązania:
https://bibliotekanauki.pl/articles/1208627.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
pseudocompact group
$G_δ$-dense subgroup
singular cardinals hypothesis
torsion-free rank
connected topological group
0-dimensional group
divisible hull
chain
anti-chain
Opis:
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, $m(α) ≤ 2^α$. We show:
   Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m$(α)≤ r_0 (G) ≤ γ ≤ 2^α$, or α > ω and $α^ω ≤ r_0(G) ≤ 2^α$, then G admits a pseudocompact group topology of weight α.
 Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies $r_0(G) ≥ m(α)$.
 Theorem 5.2(b). If G is divisible Abelian with $2^{r_{0}(G)} ≤ γ$, then G admits at most $2^γ$-many pseudocompact group topologies.
 Theorem 6.2. Let $β = α^ω$ or $β = 2^α$ with β ≥ α, and let $β ≤ γ < κ ≤ 2^β$. Then both $⊕_γℚ$ and the free Abelian group on γ-many generators admit exactly $2^κ$-many pseudocompact group topologies of weight κ. Of these, some $κ^+$-many form a chain and some $2^κ$-many form an anti-chain.
Źródło:
Fundamenta Mathematicae; 1993, 142, 3; 221-240
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies