Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "degradation indicator" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Sulphur and heavy metals content in the soil of meadow ecosystems adjoining the metallurgic plant Huta Katowice as an indicator of environment degradation
Autorzy:
Kimsa, T
Pawelko, K.
Ciepal, R.
Palowski, B.
Sliwinska-Wyrzychowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/1450127.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
sulphur
degradation indicator
soil
soil property
environment degradation
Upper Silesian Industrial Area
degraded ecosystem
anthropogenic ecosystem
meadow ecosystem
heavy metal
Opis:
The content of Cu, Pb, Zn, Fe, Cd and S in the upper soil layer of meadow ecosystems surrounding the steelworks "Huta Katowice" was investigated. Sampling plots were located at a different distance and direction from the plant, but in a similar type of meadow community and soil. Spatial and seasonal variability of the investigated elements content was found. Such results indicate that the investigated area was polluted both by that steelworks and by the industrial plants situated in the Industrial Region of Upper Silesia.
Źródło:
Acta Agrophysica; 2001, 51; 101-111
1234-4125
Pojawia się w:
Acta Agrophysica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Environmental effects of using large rivers for irrigation in the Kazakhstan – Syr Darya case study
Autorzy:
Mustafayev, Zhumakhan
Mosiej, Józef
Abdyvalieva, Karlygas S.
Kozykeeva, Alija
Powiązania:
https://bibliotekanauki.pl/articles/1844408.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
diversity index
irrigation
soil degradation
Syr Darya River
environmental risk indicator
Opis:
The issues discussed in the paper concern the assessment of changes in quantitative and qualitative indicators of water resources in the climatic conditions of the southern part of Kazakhstan. For this purpose, many years of systematic field observations and other continuous data obtained from the functioning measurement and observation stations operating within the Aral-Syrdarya Basin Inspection were used. On the basis of the obtained data, indicators were determined that characterize the quantity and quality of water supplied to the soil in the irrigation process, as well as the quantity and quality of water flowing out of the drainage systems, together with an evaluation of the effectiveness of irrigation and drainage systems. Soil salinity was assessed in five irrigated massifs with a total area of 332.55 thous. ha. For the same irrigated massifs, the annual amounts of water taken for irrigation, the amount of outflowing water and the assessment of the mineralization level were determined. Based on the developed results of field observations characterizing the hydrological and environmental situation of the lower section of the Syr Darya River in 1960–2015, the negative reaction coefficients were calculated for the local population, soil and vegetation for five of the irrigated massifs of the Kyzylorda region. The ecological situation of the habitat of soil and plants in the lower reaches of the Syr Darya River in all irrigation areas deteriorates on a time scale, since as a result of the reclamation of agricultural lands, intensive secondary soil salinization occurs and the formation of infiltration runoff with high mineralization, contributing to the violation of the harmonization of the relationship between nature and man.
Źródło:
Journal of Water and Land Development; 2020, 47; 125-134
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Degradation assessment of bearing based on machine learning classification matrix
Autorzy:
Kumar, Satish
Kumar, Paras
Kumar, Girish
Powiązania:
https://bibliotekanauki.pl/articles/1841739.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
degradation state
health condition indicator
machine learning
diagnostic model
prognostic model
Opis:
In the broad framework of degradation assessment of bearing, the final objectives of bearing condition monitoring is to evaluate different degradation states and to estimate the quantitative analysis of degree of performance degradation. Machine learning classification matrices have been used to train models based on health data and real time feedback. Diagnostic and prognostic models based on data driven perspective have been used in the prior research work to improve the bearing degradation assessment. Industry 4.0 has required the research in advanced diagnostic and prognostic algorithm to enhance the accuracy of models. A classification model which is based on machine learning classification matrix to assess the degradation of bearing is proposed to improve the accuracy of classification model. Review work demonstrates the comparisons among the available state-of-the-art methods. In the end, unexplored research technical challenges and niches of opportunity for future researchers are discussed.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 395-404
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies