Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data grid" wg kryterium: Temat


Tytuł:
Data and Task Scheduling in Distributed Computing Environments
Autorzy:
Szmajduch, M.
Powiązania:
https://bibliotekanauki.pl/articles/309172.pdf
Data publikacji:
2014
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
data cloud
data grid
data processing
data scheduling
ETC Matrix
Opis:
Data-aware scheduling in today’s large-scale heterogeneous environments has become a major research and engineering issue. Data Grids (DGs), Data Clouds (DCs) and Data Centers are designed for supporting the processing and analysis of massive data, which can be generated by distributed users, devices and computing centers. Data scheduling must be considered jointly with the application scheduling process. It generates a wide family of global optimization problems with the new scheduling criteria including data transmission time, data access and processing times, reliability of the data servers, security in the data processing and data access processes. In this paper, a new version of the Expected Time to Compute Matrix (ETC Matrix) model is defined for independent batch scheduling in physical network in DG and DC environments. In this model, the completion times of the computing nodes are estimated based on the standard ETC Matrix and data transmission times. The proposed model has been empirically evaluated on the static grid scheduling benchmark by using the simple genetic-based schedulers. A simple comparison of the achieved results for two basic scheduling metrics, namely makespan and average flowtime, with the results generated in the case of ignoring the data scheduling phase show the significant impact of the data processing model on the schedule execution times.
Źródło:
Journal of Telecommunications and Information Technology; 2014, 4; 71-78
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Replica Selection Algorithm in Data Grids: the Best-Fit Approach
Autorzy:
Jaradat, A.
Powiązania:
https://bibliotekanauki.pl/articles/2023697.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
grid computing
replica selection
data grid
obliczenia sieciowe
wybór repliki
siatka danych
Opis:
The design of Data Grids allows grid facilities to manage data files and their corresponding replicas from all around the globe. Replica selection in Data Grids is a complex service that selects the best replica place amongst several scattered places based on quality of service parameters. All replica selection algorithms look for the best replica for the requesting users without taking into account the limitation of their network or hardware capabilities to find the best fit. This leaves capable users with limited ability to connect with the best replica places without fully utilizing their download speed. It furthermore compromises the best replica places and shifts capable users to lower quality replica places and degrades the whole Data Grid environment. To improve quality of service parameters the solution we propose is, a matching algorithm that matches the capabilities of grid user with replica providers that are the best fit. This best-fit approach takes into account both the capabilities of grid users and the capabilities of replica places and creates matches of almost similar capabilities. Simulation results proved that the best-fit algorithm outperforms previous replica selection algorithms.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 30-37
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel grid-based clustering algorithm
Autorzy:
Starczewski, Artur
Scherer, Magdalena M.
Książek, Wojciech
Dębski, Maciej
Wang, Lipo
Powiązania:
https://bibliotekanauki.pl/articles/2031101.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
data mining
grid-based clustering
grid structure
Opis:
Data clustering is an important method used to discover naturally occurring structures in datasets. One of the most popular approaches is the grid-based concept of clustering algorithms. This kind of method is characterized by a fast processing time and it can also discover clusters of arbitrary shapes in datasets. These properties allow these methods to be used in many different applications. Researchers have created many versions of the clustering method using the grid-based approach. However, the key issue is the right choice of the number of grid cells. This paper proposes a novel grid-based algorithm which uses a method for an automatic determining of the number of grid cells. This method is based on the kdist function which computes the distance between each element of a dataset and its kth nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 319-330
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on operation fault diagnosis algorithm of power grid equipment based on power big data
Autorzy:
Qian, Jianguo
Zhu, Bingquan
Li, Ying
Shi, Zhengchai
Powiązania:
https://bibliotekanauki.pl/articles/949910.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
association rules
big data
data mining
fault diagnosis
grid equipment
Opis:
Power big data contains a lot of information related to equipment fault. The analysis and processing of power big data can realize fault diagnosis. This study mainly analyzed the application of association rules in power big data processing. Firstly, the association rules and the Apriori algorithm were introduced. Then, aiming at the shortage of the Apriori algorithm, an IM-Apriori algorithm was designed, and a simulation experiment was carried out. The results showed that the IM-Apriori algorithm had a significant advantage over the Apriori algorithm in the running time. When the number of transactions was 100 000, the running of the IM-Apriori algorithm was 38.42% faster than that of the Apriori algorithm. The IM-Apriori algorithm was little affected by the value of supportmin. Compared with the Extreme Learning Machine (ELM), the IM-Apriori algorithm had better accuracy. The experimental results show the effectiveness of the IM-Apriori algorithm in fault diagnosis, and it can be further promoted and applied in power grid equipment.
Źródło:
Archives of Electrical Engineering; 2020, 69, 4; 793-800
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A toolkit for storage QoS provisioning for data-intensive applications
Autorzy:
Słota, R.
Król, D.
Skałkowski, K.
Orzechowski, M.
Nikolow, D.
Kryza, B.
Wrzeszcz, M.
Kitowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/305571.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
data-intensive application
storage management
QoS
grid
Opis:
This paper describes a programming toolkit developed in the PL-Grid project, named QStorMan, which supports storage QoS provisioning for data-intensive applications in distributed environments. QStorMan exploits knowledgeoriented methods for matching storage resources to non-functional requirements, which are defined for a data-intensive application. In order to support various usage scenarios, QStorMan provides two interfaces, such as programming libraries or a web portal. The interfaces allow to define the requirements either directly in an application source code or by using an intuitive graphical interface. The first way provides finer granularity, e.g., each portion of data processed by an application can define a different set of requirements. The second method is aimed at legacy applications support, which source code can not be modified. The toolkit has been evaluated using synthetic benchmarks and the production infrastructure of PL-Grid, in particular its storage infrastructure, which utilizes the Lustre file system.
Źródło:
Computer Science; 2012, 13 (1); 63-73
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Review on Big Data Management and Decision-Making in Smart Grid
Autorzy:
Mohamed, Amira
Refaat, Shady S.
Abu-Rub, Haitham
Powiązania:
https://bibliotekanauki.pl/articles/1193826.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Big Data
energy management
Big Data analytics
smart grid
decision-making
Opis:
Smart grid (SG) is the solution to solve existing problems of energy security from generation to utilization. Examples of such problems are disruptions in the electric grid and disturbances in the transmission. SG is a premium source of Big Data. The data should be processed to reveal hidden patterns and secret correlations to extrapolate the needed values. Such useful information obtained by the so-called data analytics is an essential element for energy management and control decision towards improving energy security, efficiency, and decreasing costs of energy use. For that reason, different techniques have been developed to process Big Data. This paper presents an overview of these techniques and discusses their advantages and challenges. The contribution of this paper is building a recommender system using different techniques to overcome the most obstacles encountering the Big Data processes in SG. The proposed system achieves the goals of the future SG by (i) analyzing data and executing values as accurately as possible, (ii) helping in decision-making to improve the efficiency of the grid, (iii) reducing cost and time, (iv) managing operating parameters, (v) allowing predicting and preventing equipment failures, and (vi) increasing customer satisfaction. Big Data process enables benefits that were never achieved for the SG application.
Źródło:
Power Electronics and Drives; 2019, 4, 39; 1-13
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza symulacyjna zużycia energii elektrycznej u odbiorcy końcowego z wykorzystaniem inteligentnego opomiarowania
Simulation analysis of electricity consumption for the final consumer with the use of smart metering
Autorzy:
Mirowski, T.
Pepłowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/952494.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
smart metering
smart grid
inteligentne opomiarowanie
big data
Opis:
Operatorzy sieci dystrybucyjnych wprowadzają obecnie inteligentne systemy pomiaru zużycia energii w gospodarstwach domowych. Tym samym możliwe staje się zdalne odczytywanie parametrów miernika energii oraz automatyczne generowanie bilingu. Proces ten znajduje się we wczesnej fazie rozwoju. Obserwuje się stale rosnące zapotrzebowanie na usługi energetyczne, co stwarza potrzebę modernizacji i rozszerzenia funkcjonalności sieci elektroenergetycznych. W artykule przedstawiono zagadnienia dotyczące możliwości rozwoju inteligentnych sieci pomiarowych w Polsce. Wskazano zakres prac przeprowadzonych przez autorów w ramach projektu Big Data for Energy Sector – BigDES. Przybliżona została charakterystyka inteligentnych sieci Smart Grid. Na wybranych przykładach dokonano analizy możliwości wykorzystania inteligentnego opomiarowania systemu elektroenergetycznego. Przybliżono możliwości stosowania inteligentnych liczników energii elektrycznej – smart meters. W ramach zagadnienia kolejno badano zjawiska: precyzji pomiaru, dobowego zużycia energii elektrycznej w gospodarstwie domowym, opomiarowania stref gospodarstwa domowego oraz stosunku czasu pracy urządzeń do ceny energii elektrycznej. Zwrócono uwagę, że systemy inteligentne są w stanie ułatwić operatorom zarządzanie siecią elektroenergetyczną, a także dostarczyć wielu informacji odbiorcom końcowym. Zakończenie artykułu stanowi podsumowanie przeprowadzonych w ramach projektu prac.
Distribution network operators are currently rolling out intelligent systems for measuring energy consumption in households. Therefore, it becomes possible to remotely read meter parameters of energy and automatically generate billing. This process is currently in the early stages of development. There has been a growing demand for energy services, which creates the need to modernize and extend the functions of Polish power grid. The article presents issues concerning the possibility of smart metering network development in Poland indicated the scope of the data carried out by the authors as part of Big Data for Energy Sector – BigDES project. Authors provided approximate characterization of intelligent Smart Grid and analysis of the possibilities of using smart metering power system. Brought closer the possibility of applying smart meters. Some of Smart Grid features have been studied in- the precision of the measurement, the daily electricity consumption in the household, household metering zones and the ratio of the working time of equipment for the price of electricity. It was pointed out that intelligent systems are able to facilitate the management of the electricity network operators, as well as provide a variety of information to end users. The end of the article is a summary of the project works.
Źródło:
Polityka Energetyczna; 2016, 19, 2; 81-91
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concepts of distributed database for decision support in Smart Grid
Koncepcja rozproszonej bazy danych dla wspomagania decyzji w inteligentnych sieciach Smart Grid
Autorzy:
Mazurek, M.
Powiązania:
https://bibliotekanauki.pl/articles/210781.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
smart grid
architektura danych
rozproszona hurtownia danych
data architecture
distributed data warehouse
Opis:
Smart Grid is a concept of energy distribution network where flow of electricity, its production and consumption is managed by decentralized nodes located in microgrids. Training data for machine learning algorithms is collected from intelligent sensors, weather data, and energy market prices. Volume of the data is much higher than any of currently processed in data warehouses solutions. This challenge along with the requirement that a microgrid should be able to work in an islanding mode are key factors affecting data architecture presented in the paper. Distributed repositories are built based on NoSQL database management systems. Collecting data, mining data, developing algorithms and extraction of business rules are available as services from "cloud". This architecture minimizes costs of maintaining IT infrastructure on the microgid side, at the same time giving access to state-of-art machine learning algorithms leading to most effective strategies of energy management. In the paper, there is proposed an open-source platform for implementing the described solution.
Inteligentne sieci energetyczne, określane jako Smart Grid, zakładają wykorzystanie zdecentralizowanych ośrodków sterowania przepływem energii elektrycznej oraz pracą urządzeń zasilanych tą energią. Proces uczenia algorytmów sztucznej inteligencji sterujących systemem odbywa się w oparciu o gromadzone z sensorów dane opisujące między innymi stan urządzeń, warunki pogodowe oraz ceny na rynku. Wolumen gromadzonych danych, niespotykany w dotychczasowych zastosowaniach systemów hurtowni danych oraz wymagania na autonomiczność mikrosieci, czyli jednostek tworzących system stanowią podstawę do przedstawionej w artykule architektury danych systemu. Jest ona oparta o rozproszone repozytoria danych oraz centra przetwarzania danych zbudowane w oparciu o systemy zarządzania danymi klasy NoSQL. Gromadzenie danych, eksploracja tych danych oraz zbudowane reguły zarządzania przepływem energii są dostępne jako usługi oferowane w "chmurze". Rozwiązanie takie umożliwia minimalizację kosztów związanych z utrzymaniem infrastruktury po stronie mikrosieci, zapewniając jednocześnie możliwość wykorzystywania najnowszych i najefektywniejszych algorytmów uczenia maszynowego. W artykule przedstawiona została propozycja platformy open-source, w oparciu o którą można zbudować opisywane rozwiązanie.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2013, 62, 1; 115-128
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
"Oh yes, I remember it well!" Reflections on Using the Life-Grid in Qualitative Interviews with Couples
Autorzy:
Bell, Andrew J.
Powiązania:
https://bibliotekanauki.pl/articles/2138931.pdf
Data publikacji:
2005-08-15
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
life-grid
retrospective data
qualitative interviewing
recall
couples
reflexivity
Opis:
The life-grid has previously been used as a tool for improving the reliability of retrospective data in epidemiology. Recent research has suggested that the life-grid may also prove a useful tool for qualitative sociological interviewing, by facilitating the asking of difficult questions and acting as an aide memoire. This paper describes a pilot study which examines the influences the life-grid has upon qualitative interviews with married couples. It finds that use of the life-grid limits interviewees’ willingness to revisit topics, tends to create “event-centred”, non-reflexive, data and does not facilitate the asking of difficult questions. This paper does find that the life-grid acts to stimulate recall, but in a limited, factual fashion. It concludes that the life-grid is unlikely to prove an appropriate tool for qualitative researchers in its present form.
Źródło:
Qualitative Sociology Review; 2005, 1, 1; 51-67
1733-8077
Pojawia się w:
Qualitative Sociology Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
PQ data compression algorithm with modified quantizer and adaptive band logic using DTCWT
Autorzy:
Prathibha, E.
Manjunatha, A.
Raj, C. P.
Powiązania:
https://bibliotekanauki.pl/articles/141461.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
complex wavelets
data compression
power quality disturbances
smart grid
Opis:
Abstract:With growing demand for energy, power generated in renewable sources at various locations are distributed throughout the power grid. The power grid known as the smart grid needs to monitor power generation and its smart distribution. Smart meters provide solutions for monitoring power over smart grids. Smart meters need to continuously log data and at every source there is a large amount of data generated that needs to be compressed for both storage and transmission over the smart grid. In this paper, a novel algorithm for PQ data compression is proposed that uses the Dual Tree Complex Wavelet Transform (DTCWT) for sub-band computation and a modified quantizer is designed to reduce subband coefficient limits to less than 4 bits. The Run Length Encoding (RLC) and Huffman Coding algorithm encode the data further to achieve compression. The performance metrics such as a peak-signal-to-noise ratio (PSNR) and compression ratio (CR) are used for evaluation and it is found that the modified DTCWT (MDTCWT) improves PSNR by a factor of 3% and the mean squared error (MSE) by a factor of 16% as compared with the DTCWT based PQ compression algorithm.
Źródło:
Archives of Electrical Engineering; 2018, 67, 1; 207-223
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Infrastructure and Energy Conservation in Big Data Computing: A Survey
Autorzy:
Niewiadomska-Szynkiewicz, Ewa
Karpowicz, Michał P.
Powiązania:
https://bibliotekanauki.pl/articles/307930.pdf
Data publikacji:
2019
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Big Data
cloud
cluster
energy-efficient computation
grid
HPC
software platform
Opis:
Progress in life, physical sciences and technology depends on efficient data-mining and modern computing technologies. The rapid growth of data-intensive domains requires a continuous development of new solutions for network infrastructure, servers and storage in order to address Big Datarelated problems. Development of software frameworks, include smart calculation, communication management, data decomposition and allocation algorithms is clearly one of the major technological challenges we are faced with. Reduction in energy consumption is another challenge arising in connection with the development of efficient HPC infrastructures. This paper addresses the vital problem of energy-efficient high performance distributed and parallel computing. An overview of recent technologies for Big Data processing is presented. The attention is focused on the most popular middleware and software platforms. Various energy-saving approaches are presented and discussed as well.
Źródło:
Journal of Telecommunications and Information Technology; 2019, 2; 73-82
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Proposal of new data structures for the management of the multilayer seabed DTM
Autorzy:
Maleika, W.
Powiązania:
https://bibliotekanauki.pl/articles/360391.pdf
Data publikacji:
2014
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
multilayer DTM
sea bottom modelling
grid
modelling accuracy
hydrographic data processing
Opis:
The paper contains a proposal of developing new data structures, which would describe a digital terrain model (DTM). The essential characteristic of of the proposed design is the fact, that they consist of multiple layers, where each layer describes the same, but with different accuracy (density point), and the whole structure describes a selected seabed area. Using such a novel data structure will allow for creating seabed models incorporating data of varying accuracy, and the particular layers might be used for specific purposes (e.g. low density data for quick visualisation, medium density data for general calculations, high density data for analysis small objects on the seabed). The author describes the assumptions underlying the development of such a structure, its functionality, possible applications and properties, as well as the outline of planned research regarding the structure.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2014, 38 (110); 75-80
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big data analysis and simulation of distributed marine green energy resources grid-connected system
Autorzy:
Tian, J.
Huang, L.
Powiązania:
https://bibliotekanauki.pl/articles/259959.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
distributed
ocean
green energy resources
grid-connected systems
big data analysis
Opis:
In order to improve the working stability of distributed marine green energy resources grid-connected system, we need the big data information mining and fusion processing of grid-connected system and the information integration and recognition of distributed marine green energy grid-connected system based on big data analysis method, and improve the output performance of energy grid-connected system. This paper proposed a big data analysis method of distributed marine green energy resources grid-connected system based on closed-loop information fusion and auto correlation characteristic information mining. This method realized the big data closed-loop operation and maintenance management of grid-connected system, and built the big data information collection model of marine green energy resources grid-connected system, and reconstructs the feature space of the collected big data, and constructed the characteristic equation of fuzzy data closed-loop operation and maintenance management in convex spaces, and used the adaptive feature fusion method to achieve the auto correlation characteristics mining of big data operation and maintenance information, and improved the ability of information scheduling and information mining of distributed marine green energy resources grid-connected system. Simulation results show that using this method for the big data analysis of distributed marine green energy resources grid-connected system and using the multidimensional analysis technology of big data can improve the ability of information scheduling and information mining of distributed marine green energy resources grid-connected system, realizing the information optimization scheduling of grid-connected system. The output performance of grid connected system has been improved.
Źródło:
Polish Maritime Research; 2017, S 3; 182-191
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heterogeneous Data Integration Architecture-Challenging Integration Issues
Autorzy:
Chromiak, M.
Grabowiecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/106210.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
grid integration model
heterogeneous integration
distributed architecture
data integration
big data
distributed transaction
warehouse
ETL
OLAP
Opis:
As of today, most of the data processing systems have to deal with a large amount of data originated from numerous sources. Data sources almost always differ regarding its purpose of existence. Thus model, data processing engine and technology differ intensely. Due to current trend for systems fusion there is a growing demand for data to be present in a common way regardless of its legacy. Many systems have been devised as a response to such integration needs. However, the present data integration systems mostly are dedicated solutions that bring constraints and issues when considered in general. In this paper we will focus on the present solutions for data integration, their flaws originating from their architecture or design concepts and present an abstract and general approach that could be introduced as an response to existing issues. The system integration is considered out of scope for this paper, we will focus particularly on efficient data integration.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2015, 15, 1; 7-11
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Redistribution population data across a regular spatial grid according to buildings characteristics
Autorzy:
Calka, B.
Bielecka, E.
Zdunkiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/145418.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dane demograficzne
siatka przestrzenna
dane topograficzne
population data
dasymetric modeling
spatial grid
choropleth map
topographic data
Opis:
Population data are generally provided by state census organisations at the predefined census enumeration units. However, these datasets very are often required at userdefined spatial units that differ from the census output levels. A number of population estimation techniques have been developed to address these problems. This article is one of those attempts aimed at improving county level population estimates by using spatial disaggregation models with support of buildings characteristic, derived from national topographic database, and average area of a flat. The experimental gridded population surface was created for Opatów county, sparsely populated rural region located in Central Poland. The method relies on geolocation of population counts in buildings, taking into account the building volume and structural building type and then aggregation the people total in 1 km quadrilateral grid. The overall quality of population distribution surface expressed by the mean of RMSE equals 9 persons, and the MAE equals 0.01. We also discovered that nearly 20% of total county area is unpopulated and 80% of people lived on 33% of the county territory.
Źródło:
Geodesy and Cartography; 2016, 65, 2; 149-162
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies