Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "czynniki transkrypcyjne" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Receptory aktywowane przez proliferatory peroksysomów w procesie nowotworzenia - fakty i kontrowersje
Peroxisome proliferator-activated receptors in carcinogenesis - facts and controversies
Autorzy:
Szydłowska, Anna
Kurzyńska, Aleksandra
Kunicka, Zuzanna
Bogacka, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/1033872.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Przyrodników im. Kopernika
Tematy:
cancer
carcinogenesis
nuclear receptors
PPAR ligands
transcription factors
czynniki transkrypcyjne
kancerogeneza
ligandy PPAR
nowotwory
receptory jądrowe
Opis:
Receptory aktywowane przez proliferatory peroksysomów (PPAR) należą do rodziny receptorów jądrowych. Dotychczas scharakteryzowano ich trzy izoformy: alfa, beta i gamma, które jako ligando-zależne czynniki transkrypcyjne zaangażowane są w regulację różnych procesów fizjologicznych w organizmie. Ich podstawową funkcją jest udział w metabolizmie lipidów i glukozy. PPAR uczestniczą również w reakcji zapalnej oraz w kontroli proliferacji i różnicowania komórek, a także w regulowaniu procesów rozrodczych. Wyniki wielu badań wskazują, że receptory te zaangażowane są w proces nowotworzenia, chociaż rola poszczególnych izoform nie jest jednoznacznie zdefiniowana. Izoforma alfa uczestniczy w powstawaniu raka wątrobowokomórkowego u gryzoni, jednak w przypadku ludzkich hepatocytów długotrwała aktywacja tej izoformy nie wywołuje zmian nowotworowych. Udział PPARβ/δ w procesie kancerogenezy jest najbardziej niesprecyzowany spośród wszystkich izoform PPAR. Istnieją przypuszczenia, że pełni ona ważną rolę w powstawaniu raka jelita grubego. Z kolei, ekspresję PPARγ obserwuje się w wielu typach komórek nowotworowych, a rola tej izoformy w powstawaniu nowotworów jest najbardziej złożona. Wykazuje ona m. in. właściwości anty-proliferacyjne i proapoptotyczne, hamuje angiogenezę oraz indukuje końcowe różnicowanie komórek. W niniejszej pracy przedstawiono istniejące poglądy i kontrowersje na temat udziału trzech izoform PPAR w procesie nowotworzenia.
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor family. So far, three isoforms of PPARs: alpha, beta and gamma have been described. As ligand-dependent transcription factors, they participate in the regulation of diverse physiological processes. PPARs are involved in the regulation of lipid and glucose metabolism. They also control inflammatory processes or cell proliferation and differentiation. PPARs are also implicated in the regulation of reproductive functions. Furthermore, results of several studies clearly indicate, that PPARs are involved in carcinogenesis. PPARα mediates in hepatocellular tumor growth in rodents, but its role in human hepatocytes is not so obvious as in rodents. The role of PPARβ/δ in carcinogenesis still remains unclear. It is believed, that PPARβ/δ has important function in colorectal tumor growth. In turn, the expression of PPARγ has been demonstrated in different types of tumor cells and its role in carcinogenesis seems the most complex. There are reports that indicate antiproliferative and proapoptotic effects of PPARγ activation. It has been also demonstrated that PPARγ ligands inhibit angiogenesis and induce terminal differentiation. In this review, we summarize current findings regarding the involvement of the three PPAR isoforms in carcinogenesis.
Źródło:
Kosmos; 2018, 67, 2; 361-373
0023-4249
Pojawia się w:
Kosmos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The role of satellite cells in skeletal muscle regeneration
Rola komórek satelitarnych w regeneracji mięśnia szkieletowego
Autorzy:
Harasiuk, Dorota
Górski, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1942938.pdf
Data publikacji:
2009
Wydawca:
Akademia Wychowania Fizycznego im. Bronisława Czecha w Krakowie
Tematy:
satellite cells
Myoblasts
Myogenic Regulatory Factors
self-renewal
Cell Transplantation
komórki satelitarne
mioblasty
mięśniowe czynniki transkrypcyjne
samoodnowa
przeszczepy komórkowe
Opis:
Skeletal muscles are composed of multinucleated fibers that cannot divide. They retain the ability to regenerate due to the presence of mononucleated cells, called satellite cells. Mitotically quiescent satellite cells are located between the sarcolemma and the basal lamina of the muscle fiber. They can be activated in response to muscle injury. Then they proliferate, differentiate and eventually fuse to damaged myofibers or fuse together to form new myofibers. A part of the activated cells escape differentiation and restore the pool of quiescent satellite cell under the basal lamina of the newly formed muscle fibers. A decline in the number and activity of satellite cells results in an impaired regeneration potential of aged muscle. However regeneration can be improved by modification of the microenvironment of the skeletal muscle. Satellite cells have been considered as a source for cell-based therapies in the treatment of diseases such as muscular dystrophies, heart failure, insufficient function of external urethral sphincter. They can be derived easily from skeletal muscle biopsies and cultured in vitro before cell transplantation. After injection to the host muscle they undergo a myogenic differentiation program. In the case of muscle dystrophy, clinical trials have demonstrated a lack of health improvement after transplantation. This was the result of the poor survival and limited migratory capacity of the injected cells. More promising results were obtained when satellite cells were transferred to the locally damaged muscles. This article demonstrates the role of satellite cells in skeletal muscle regeneration, and the possibilities of their use in cell-based therapies in the case of diseases where muscle fibers are impaired.
Źródło:
Medical Rehabilitation; 2009, 13(3); 25-32
1427-9622
1896-3250
Pojawia się w:
Medical Rehabilitation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Telomeraza – struktura i funkcja oraz regulacja ekspresji genu
Telomerase – structure, function and the regulation of gene expression
Autorzy:
Bryś, Magdalena
Laskowska, Magdalena
Forma, Ewa
Krześlak, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1032770.pdf
Data publikacji:
2012
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
telomeraza
gen
białko
ekspresja genu
czynniki
transkrypcyjne
telomerase
gene
protein
gene expression
transcription factors
Opis:
A telomere is a fragment localized at the end of chromosome which protects the chromosome from damage during replication. Telomeres are also factors that control number of cell divisions and are thought to be a suppressors of carcinogenesis since limited, strictly determined number of cell divisions protects from accumulation of mutations in cell. It is assumed that presence of 4-6 mutation in genetic material is a carcinogenic factor and after about 60-70 divisions, the cell enter the resting phase. Telomerase is an enzyme which adds DNA sequence to the 3’ end of DNA and extends the telomere region. This protein is a DNA polymerase dependent on RNA, which syntheses telomere by reverse transcription. The unique characteristics of telomerase is that RNA matrix for DNA synthesis is an integral component of this enzyme. Telomerase is present in intensively dividing cells and its activity is decreasing with age. In normal cells usually activity of telomerase is undetectable but in cancer cells activity of this enzyme is high. The aim of this work is to present the structure of telomeres and the role of proteins involved in maintaining the structure. In details, the structure and function of the telomerase gene/protein is described, including the regulation of gene expression at the transcriptional level. The involvement of telomerase in the neoplastic transformation has been also characterized.
Telomer jest to fragment chromosomu zlokalizowany na jego końcu, który zabezpiecza go przed uszkodzeniem podczas kopiowania. Telomery są także czynnikami kontrolującymi liczbę podziałów komórkowych i dlatego uważane są za supresory transformacji nowotworowej, ponieważ ograniczona, ściśle kontrolowana liczba podziałów zapobiega ewentualnemu kumulowaniu się mutacji w komórce. Przyjęto, że obecność 4-6 mutacji w materiale genetycznym jest czynnikiem karcynogennym, a po granicznej liczbie podziałów (około 60-70) komórka wchodzi w fazę spoczynku M1. Enzymem, którego zadaniem jest dobudowanie 3'-końcowego odcinka nici DNA i tym samym wydłużanie sekwencji telomerowych jest enzym telomeraza. Białko to jest polimerazą DNA zależną od RNA, która syntetyzuje telomery na zasadzie odwrotnej transkrypcji. Unikalną cechą telomerazy jest to, że jej integralnym składnikiem jest matryca RNA służąca do syntezy DNA. Telomeraza występuje w intensywnie dzielących się komórkach, a jej aktywność zmniejsza się wraz z wiekiem. W komórkach prawidłowych zwykle nie stwierdza się aktywności telomerazy, natomiast w nowotworowych aktywność tego enzymu zwykle jest podwyższona. W pracy omówiono strukturę sekwencji telomerowych oraz udział białek zaangażowanych w jej utrzymanie. Szczegółowo przedstawiono także strukturę i funkcję genu/białka telomerazy, z uwzględnieniem regulacji ekspresji genu na poziomie transkrypcji. Scharakteryzowano ponadto udział telomerazy w procesach transformacji nowotworowej.
Źródło:
Folia Medica Lodziensia; 2012, 39, 2; 293-326
0071-6731
Pojawia się w:
Folia Medica Lodziensia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zaburzenia procesu O-GlcNAcylacji w nowotworach
Alterations of O-GlcNAcylation process in cancers
Autorzy:
Ciesielski, Piotr
Krześlak, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1032551.pdf
Data publikacji:
2014
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
o-glcnacylacja
nowotwory
cykl komórkowy
czynniki
transkrypcyjne
transdukcja sygnału
glikoliza
metastaza
o-glcnacylation
cancers
cell cycle
transcription factors
signal
transduction
glycolysis
metastasis
Opis:
O-GlcNAcylation is a post-translational modification involving the addition of a N-acetylglucosamine moiety to the serine/threonine residues of cytosolic or nuclear proteins. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT) which catalyzes the addition of the GlcNAc moiety from UDP-GlcNAc to target proteins and O-GlcNAcase (OGA) which catalyses the hydrolytic removal of the sugar moiety from proteins. Dynamic and reversible O-GlcNAcylation is emerging as an important regulator of diverse cellular processes, such as signal transduction, metabolism, transcription, translation, proteasomal degradation and cell cycle. O-GlcNAcylation occurs on serine or threonine residues of proteins at sites that may also be phosphorylated. Therefore, an extensive crosstalk exists between phosphorylation and O-GlcNAcylation. Recent studies indicate that increased O-GlcNAcylation is a general feature of cancer. Elevated O-GlcNAcylation (hyper-OGlcNAcylation) occurs in many human malignancies including solid tumors such as lung, prostate, breast, colorectal, liver, pancreatic cancers as well as non-solid cancers such as chronic lymphocytic leukemia. The changes in O-GlcNAcylation are associated with the changes in OGT and OGA expression levels. Hyper-O-GlcNAcylation may be linked to the various hallmarks of cancer, including cancer cell proliferation, survival, invasion, metastasis and metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, cell cycle, transcription factors, and metabolic enzymes in cancer cells.
O-GlcNAcylacja jest odwracalną potranslacyjną modyfikacją białek polegającą na przyłączeniu wiązaniem O-glikozydowym pojedynczych reszt β-N-acetyloglukozaminy (GlcNAc) do seryny lub treoniny. W proces O-GlcNAcylacji włączone są dwa enzymy: O-GlcNAc transferaza (OGT), enzym odpowiedzialny za przyłączanie reszt N-acetyloglukozaminy i β-N-acetyloglukozaminidaza (OGA), która katalizuje reakcję odłączania reszt GlcNAc. Dynamiczna i odwracalna O-GlcNAcylacja odgrywa istoną rolę w regulacji szeregu procesów komórkowych, takich jak przekazywanie sygnału, metabolizm, transkrypcja, translacja, degradacja białek w proteasomach i cykl komórkowy. Ponieważ O-GlcNAcylacja dotyczy reszt seryny lub treoniny, które znajdują się w miejscach rozpoznawanych przez kinazy białkowe, wpływa ona na poziom fosforylacji wielu białek i isnieje ścisła zależność pomiędzy tymi modyfikacjami. Ostanie badania wskazują, że w komórkach nowotworowych dochodzi do znacznego zwiększenia poziomu O-GlcNAcylacji. Hiper-O-GlcNAcylację stwierdzono w różnych typach nowotworów, włączając w to guzy lite np. płuc, prostaty, piersi, jelita grubego, trzustki, wątroby a także białaczki np. przewlekłą białaczkę limfatyczną. Zaburzenia O-GlcNAcylacji związane są ze zmianami w komórkach nowotworowych ekspresji enzymów odpowiedzialnych za ten proces, tj. OGT i OGA. Hiper-O-GlcNAcylacja wpływa na proliferację, przeżycie i metabolizm komórek nowotworowych, jak również zwiększa ich zdolność do inwazji i metastazy. Prezentowana praca stanowi przegląd aktualnych informacji dotyczących roli O-GlcNAcylacji w regulacji szlaków przekazywania sygnałów, cyklu komórkowego, czynników transkrypcyjnych oraz enzymów i innych białek związanych z metabolizmem komórek nowotworowych.
Źródło:
Folia Medica Lodziensia; 2014, 41, 1; 65-91
0071-6731
Pojawia się w:
Folia Medica Lodziensia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies