Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "czas naprawy" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Maintainability Allocation Method Based on Time Characteristics for Complex Equipment
Metoda alokacji obsługiwalności złożonych urządzeń oparta na charakterystykach czasowych
Autorzy:
Zhou, D.
Jia, X.
Lv, C.
Li, Y.
Powiązania:
https://bibliotekanauki.pl/articles/300709.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
maintainability
maintenance
allocation method
MTTR
obsługiwalność
eksploatacja
metoda alokacji
średni czas do naprawy MTTR
Opis:
Maintainability allocation is an important step in product quality design. Traditional allocation methods are limited such that the allocated mean time to repair for each unit design apartment cannot be totally controlled by the corresponding design apartment. This paper proposesa new time characteristics-based maintainability allocation method to solve the aforementioned problem. The relationship between design content and repair time is considered in this method, and repair time is divided into common and individual repair time. Common repair time, which isdetermined by the overall system design,is deducted from the total repair time. Individual repair time is allocated to the specific unit through proper traditional allocation method. A case study is performed,and results demonstrate that the new method is more suitable and effective than original methods in terms ofmaintainability allocation.
Alokacja obsługiwalności jest ważnym krokiem w projektowaniu jakości produktów. Tradycyjne metody alokacji są ograniczone w takim sensie, że alokowany średni czas do naprawy dla każdego działu projektowania jednostki produktu nie może być całkowicie kontrolowany przez odpowiedni dział projektowania. W niniejszej pracy zaproponowano rozwiązanie tego problemu wykorzystujące nową metodę alokacji obsługiwalności opartą na charakterystykach czasowych. W proponowanej metodzie bierze się pod uwagę związek między zawartością projektu a czasem naprawy, czas naprawy zaś dzieli się na wspólny i indywidualny. Wspólny czas naprawy, który zależy od ogólnej konstrukcji systemu, odejmuje się od całkowitego czasu naprawy. Indywidualny czas naprawy alokuje się do konkretnej jednostki za pomocą odpowiedniej tradycyjnej metody alokacji. W pracy przeprowadzono studium przypadku, którego wyniki pokazują, że nowa metoda jest bardziej odpowiednia i skuteczna jeśli chodzi o alokację obsługiwalności niż metodystosowane pierwotnie.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 4; 441-448
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mean failure mass and mean failure repair time: parameters linking reliability, maintainability and supportability
Średnia masa uszkodzenia i średni czas naprawy uszkodzenia: parametryłączące niezawodność, obsługiwalność i utrzymywalność
Autorzy:
Yang, Y.
Lu, Z.
Luo, X.
Ge, Z.
Qian, Y.
Powiązania:
https://bibliotekanauki.pl/articles/301018.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
średnia masa uszkodzenia
średni czas naprawy uszkodzenia
niezawodność
obsługiwalność
LRU
mean failure mass
mean failure repair time
reliability
maintainability
Opis:
Jak dotąd w inżynierii niezawodności nie istniały parametry łączące niezawodność, obsługiwalność i utrzymywalność. Wskaźniki takie jak gotowość mogą być stosowane w celu sprawdzenia zgodności tych cech RAM (Reliability, Availability, Maintainability – Niezawodność, Gotowość, Obsługiwalność) dopiero po uzyskaniu indywidualnego wskaźnika każdej charakterystyki, takich jak MTBF, MTTR, itp. W ten sposób dostępne metody równoważenia owych trzech cech nie są wystarczająco skuteczne i bezpośrednie w fazie projektowania produktu . Niniejszy artykuł przedstawia pojęcia średniej masy uszkodzenia i średniego czasu naprawy uszkodzenia. Badając zależność prawdopodobieństwa uszkodzenia i masy produktu, uzyskuje się cechę łączącą niezawodność i utrzymywalność. Podobnie, badając zależność prawdopodobieństwa uszkodzenia i średniego czasu naprawy produktu, uzyskuje się cechę łączącą niezawodność i obsługiwalność. Na bazie powyższych definicji osiągnięto kompromisowe podejście do niezawodności, obsługiwalności i utrzymywalności podczas fazy projektowania. Skuteczności obu nowych koncepcji dowodzi przykład równoważenia niezawodności i obsługiwalności podsystemu stacji kosmicznej.
Up to now, no parameters linking reliability, maintainability and supportability directly are available in reliability engineering. Index such as availability can be used to check the compatibility of those RAM features only after individual index of every characteristic is obtained such as MTBF, MTTR, etc. Thus available methods to balance those three features are not efficient and direct during the product design phase. In this paper, concepts of mean failure mass and mean failure repair time are presented. By investigating the relationship of the failure probability and the mass of a product, a feature linking reliability and supportability is obtained. Similarly, by studying the relationship of the failure probability and the mean time to repair of a product, a feature linking reliability and maintainability is obtained. Based on above definitions, an approach of reliability, maintainability and supportability trade-off during design phase is achieved. Effectiveness of both of the new concepts is demonstrated by an example of balancing the maintainability and supportability of a subsystem of a space station.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 2; 307-312
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Availability analysis of series redundancy models with imperfect switchover and interrupted repairs
Analiza gotowości modeli redundancji kaskadowej uwzględniających niedoskonałe przełączanie oraz przerwane naprawy
Autorzy:
Shim, J.
Ryu, H.
Lee, Y.
Powiązania:
https://bibliotekanauki.pl/articles/302074.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
gotowość
redundancja kaskadowa
niedoskonałe przełączenie
naprawa przerwana
ogólny czas naprawy
availability
series redundancy
imperfect switchover
interrupted repair
general repair time
Opis:
This paper considers N + 1 series redundancy, where N components are active and 1 component is standby in normal state. The active components execute the service, while the standby component is ready to take over the active role if the active components fail. When an active component fails, the standby, if available, automatically takes over system operations. However, the automatic switchover of the standby component to active mode might not be possible due to hardware or software issues. When a component failure or an imperfect switchover occurs, it immediately begins to be repaired. However, the repair process is possible to be interrupted. The most existing literature of redundancy models has focused on Markovian systems with uninterrupted repairs. This paper considers a non-Markovian redundancy model with interrupted repairs, where the repair time, the non-automatic switchover time, and the interrupted time are generally distributed. Using supplementary variable method and integro-differential equations, we obtain the steady-state availability for the redundancy model.
W niniejszym artykule rozważano przypadek redundancji kaskadowej typu N + 1, w której liczba N elementów pozostaje aktywnych, a jeden komponent jest w trybie gotowości w stanie normalnym. Elementy aktywne wykonują usługę, podczas gdy składowa rezerwowa pozostaje w stanie gotowości do przejęcia roli aktywnej w przypadku, gdyby składniki aktywne uległy uszkodzeniu. Gdy element aktywny przestaje działać, element zastępczy, jeśli jest dostępny, automatycznie przejmuje operacje systemowe. Jednak automatyczne przełączenie komponentu zastępczego na tryb aktywny nie zawsze jest możliwe z powodu problemów ze sprzętem lub oprogramowaniem. Jeśli wystąpi awaria komponentu lub niedoskonałe przełączenie, natychmiast rozpoczyna się naprawa. Proces naprawy może jednak zostać przerwany. Większośćistniejącej literatury na temat modeli nadmiarowości koncentruje się na systemach Markowa, w których nie dochodzi do przerwania naprawy. W niniejszym artykule rozważano niemarkowowski model nadmiarowości uwzględniający możliwość przerwania naprawy, w którym czas naprawy, czas nieautomatycznego przełączenia oraz czas przerwany mają rozkład ogólny. Wykorzystując metodę dodatkowej zmiennej oraz równania całkowo-różniczkowe otrzymano gotowość stacjonarną dla omawianego modelu redundancji.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 4; 640-649
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability enhancement using optimization analysis
Autorzy:
Madlenak, R.
Dutkova, S.
Hostakova, D.
Sarkan, B.
Powiązania:
https://bibliotekanauki.pl/articles/197150.pdf
Data publikacji:
2018
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
probability distribution
service time
chi-squared goodness-of-fit test
rozkład prawdopodobieństwa
czas naprawy
Opis:
This paper presents an optimization analysis of a queuing system for a particular post office as a tool to increase system reliability. The consideration of system reliability in terms of queuing system failures is very relevant. One way to increase reliability is to analyse the system and its parameters in order to identify its most critical flaws. We used the chi-squared goodness-of-fit test based on the validation of a null hypothesis over an alternative hypothesis. The purpose of the test was to verify the correspondence of the measured data with a theoretical probability distribution. Measurements of relevant data were performed on the specific post office that represented the subject of our research. This approach proved to be a powerful tool in system analysis and optimization. The results of such an analysis can serve as the basis for the modelling of queuing systems.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2018, 100; 115-125
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies