Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "cross variogram" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Badania korelacji przestrzennych zawartości wybranych pierwiastków śladowych w glebach Warszawy i okolic
Spatial correlation studies of trace element concentrations in the soils of Warsaw and immediate vicinity
Autorzy:
Zawadzki, J.
Powiązania:
https://bibliotekanauki.pl/articles/237618.pdf
Data publikacji:
2002
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
zanieczyszczenie gleb
metale ciężkie
geostatystyka
korelogram wzajemny
funkcja kodyspersji
soil contamination
trace elements
geostatistics
cross variogram
codispersion function
Opis:
W artykule omówiono metody geostatystyczne przeznaczone do opisu korelacji przestrzennych. Obliczono empiryczne miary korelacji i zmienności przestrzennej i przedyskutowano je na przykładach opartych na zbiorze danych składającym się z pomiarów zawartości pierwiastków śladowych w glebie. Zawartość As, Cd, Co, Mn, Ni, Pb i Zn była badana w glebach Warszawy i jej okolic. Próbki gleby były pobierane z głębokości 0-0,2 m i poddawane odpowiednim analizom chemicznym. Następnie wykonano obliczenia statystycznych parametrów opisowych, po których wykonano analizę składowych głównych. Rezultaty tej analizy pokazały, że badane pierwiastki można pogrupować w trzy klasy: As i Cd; Co, Mn i Ni; Pb i Zn. Następnie obliczono i szczegółowo przedyskutowano typowe geostatystyczne miary ciągłości przestrzennej: autowariogramy oraz wariogramy krzyżowe. Dla porównania wykonano również obliczenia autokorelogramów oraz korelogramów krzyżowych. Następnie wykonano dokładne modelowanie eksperymentalnych autowariogramów oraz wariogramów krzyżowych. Stwierdzono, że najlepsza "struktura gniazdowa" dla wszystkich badanych pierwiastków z wyjątkiem As i Cd jest sumą efektu losowego oraz modelu sferycznego. W przypadku As i Cd zaobserowwano wariogram, w którym dominował efekt losowy. Otrzymano również parametry autowariogramów oraz wariogramów krzyżowych. Wysoką korelację klasyczną opisywaną poprzez współczynnik korelacji Pearsona, w połączeniu z wysoką korelacją przestrzenną znaleziono w przypadku następujących par pierwiastków: Co-Ni, Pb-Zn, Cu-Zn, Mn-Co, Mn-Ni, Cu-Pb, Ni-Zn, Ni-Cu, Ni-Pb. W celu lepszego zrozumienia zaobserwowanych korelacji wykorzystano liniowy model koregionalizacji. W tym celu wyznaczono i wymodelowano współczynnik koregionalizacji, który jest geostatystycznym odpowiednikiem współczynnika korelacji Pearsona. Współczynnik koregionalizacji zawiera informację dotyczącą zarówno klasycznych jak i przestrzennych korelacji. Z tego powodu współczynnik koregionalizacji może osiągać maksimum dla odległości większych od zera (korelacje przesunięte).
Empirical measures of spatial correlation and variability were calculated and discussed using examples based on a data set which included soil concentrations of As, Cd, Co, Mn, Ni, Pb and Zn measured in Warsaw and in the neighbouring area. Chemical analyses were carried out with soil samples collected at the depth of 0 to 0.20 m. Next the descriptive statistical parameters were calculated and thereafter Principal Component Analysis was carried out. The results showed that the trace elements under study can be grouped into the following three classes: As nad Cd; Co, Mn and Ni; Pb and Zn. Conventional geostatistical measures of spatial continuity - auto-variograms and cross-variograms - were calculated and discussed in detail. For comparison, calculations were also carried out for auto-correlograms and cross-correlograms. The computations were followed by accurate modelling of the experimental auto-variograms and cross-variograms. It was found that for all the trace elements under study (except As and Cd) the best "nested structure" was a combination of the nugget effect and spherical model. For As and Cd, nugget-like variograms were observed. The parameters of the variograms and cross-variograms describing spatial continuity and spatial correlation were also determined. A significant classical correlation described by the Pearson coefficient and a significantly high spatial correlation described by the cross-variograms were obtained for the concentrations of the following pairs of elements: Co-Ni, Pb-Zn, Cu-Zn, Mn-Ni, Cu-Pb, Ni-Zn, Ni-Cu and Ni-Pb. To gain a better understanding of the correlations observed, use was made of the linear model of coregionalization. For this purpose, the spatial dependence of the coregionalization coefficient, which is a geostatistical equivalent of the Pearson coefficient provides information on both classical and spatial correlations. This is why it can take values greater than 1 and reach a maximum for sampling distances greater than zero ("deferred correlation"). Such behavioral pattern was detected by modelling via "nested structures", which are combinations of the nugget effect and spherical model for the probable sets of component variogram parameters.
Źródło:
Ochrona Środowiska; 2002, 4; 17-26
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geostatistical analysis of variability of silica dioxide content within limestone deposit
Autorzy:
Świtoń, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/972329.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Wydział Geoinżynierii, Górnictwa i Geologii. Instytut Górnictwa
Tematy:
geostatistics
variogram modelling
kriging variance
cross-validation
lognormal kriging
Opis:
In the following paper, the geostatistical analysis of qualitative parameter within a limestone deposit was presented. The parameter was content of silica dioxide. Geostatistical analysis was carried out in order to identify variability of the parameter, what significantly influenced ore exploration. Sampling data was considered with regards to descriptive statistics; logarithmical character of parameter’s distribution was indicated. After logarithmical transformation omnidirectional semivariograms were calculated due to the fact that directional anisotropy was not proven. Few theoretical models were fitted to the semivariogram, further on they were verified by means of cross-validation method. Estimation results were obtained by lognormal ordinary kriging technique. They did not confirm that models classified during cross-validation as best fit are also most reliable during estimation. It is recommended to continue research on variability of parameters within the limestone deposit, including analysis conducted by indicator kriging technique. All stages of geostatistical analysis were carried out in Isatis software.
Źródło:
Mining Science; 2015, 22, Special Issue 2; 181-193
2300-9586
2353-5423
Pojawia się w:
Mining Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies