Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "critical graphs" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Eternal Domination: Criticality and Reachability
Autorzy:
Klostermeyer, William F.
MacGillivray, Gary
Powiązania:
https://bibliotekanauki.pl/articles/31342174.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
eternal dominating set
critical graphs
Opis:
We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in the sense that deleting any vertex reduces the eternal domination number. Examples of these graphs and tight bounds on connectivity, edge-connectivity and diameter are given. It is also shown that there exist graphs in which deletion of any edge increases the eternal domination number, and graphs in which addition of any edge decreases the eternal domination number.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 63-77
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination Game Critical Graphs
Autorzy:
Bujtás, Csilla
Klavžar, Sandi
Košmrlj, Gašper
Powiązania:
https://bibliotekanauki.pl/articles/31234048.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
domination game
domination game critical graphs
powers of cycles
trees
Opis:
The domination game is played on a graph $G$ by two players who alternately take turns by choosing a vertex such that in each turn at least one previously undominated vertex is dominated. The game is over when each vertex becomes dominated. One of the players, namely Dominator, wants to finish the game as soon as possible, while the other one wants to delay the end. The number of turns when Dominator starts the game on $G$ and both players play optimally is the graph invariant $ \gamma_g (G) $, named the game domination number. Here we study the $ \gamma_g$-critical graphs which are critical with respect to vertex predomination. Besides proving some general properties, we characterize $ \gamma_g$-critical graphs with $ \gamma_g = 2$ and with $ \gamma_g = 3$, moreover for each n we identify the (infinite) class of all $\gamma_g$-critical ones among the $n$th powers $ C_N^n$ of cycles. Along the way we determine $\gamma_{g} ( C_N^n ) $ for all $n$ and $N$. Results of a computer search for $ \gamma_g$-critical trees are presented and several problems and research directions are also listed.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 781-796
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On b-vertex and b-edge critical graphs
Autorzy:
Eschouf, N. I.
Blidia, M.
Powiązania:
https://bibliotekanauki.pl/articles/952798.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
b-coloring
b-chromatic number
critical graphs
Opis:
A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b-chromatic number b(G) of a graph G is the largest integer k such that G admits a b-coloring with k colors. A simple graph G is called b+-vertex (edge) critical if the removal of any vertex (edge) of G increases its b-chromatic number. In this note, we explain some properties in b+-vertex (edge) critical graphs, and we conclude with two open problems.
Źródło:
Opuscula Mathematica; 2015, 35, 2; 171-180
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the independence number of edge chromatic critical graphs
Autorzy:
Pang, Shiyou
Miao, Lianying
Song, Wenyao
Miao, Zhengke
Powiązania:
https://bibliotekanauki.pl/articles/30148675.pdf
Data publikacji:
2014-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
edge-chromatic critical graphs
independence number
Opis:
In 1968, Vizing conjectured that for any edge chromatic critical graph $G = (V,E)$ with maximum degree $△$ and independence number $α(G)$, $α(G) ≤ \frac{|V|}{2}$. It is known that $α(G) < \frac{3∆−2}{5∆−2}|V|$. In this paper we improve this bound when $△≥4$. Our precise result depends on the number $n_2$ of 2-vertices in $G$, but in particular we prove that $α(G) ≤\frac{3∆−3}{5∆−3}|V|$ when $△≥5$ and $n_2≤2(△− 1)$.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 3; 577-584
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On vertex b-critical trees
Autorzy:
Blidia, M.
Eschouf, N. I.
Maffray, F.
Powiązania:
https://bibliotekanauki.pl/articles/254799.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
b-coloring
b-critical graphs
b-critical trees
Opis:
A b-coloring is a proper coloring of the vertices of a graph such that each color class has a vertex that has neighbors of all other colors. The b-chromatic number of a graph G is the largest k such that G admits a b-coloring with k colors. A graph G is b-critical if the removal of any vertex of G decreases the b-chromatic number. We prove various properties of b-critical trees. In particular, we characterize b-critical trees.
Źródło:
Opuscula Mathematica; 2013, 33, 1; 19-28
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Double domination critical and stable graphs upon vertex removal
Autorzy:
Khelifi, Soufiane
Chellali, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/743276.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
double domination
vertex removal critical graphs
vertex removal stable graphs
Opis:
In a graph a vertex is said to dominate itself and all its neighbors. A double dominating set of a graph G is a subset of vertices that dominates every vertex of G at least twice. The double domination number of G, denoted $γ_{×2}(G)$, is the minimum cardinality among all double dominating sets of G. We consider the effects of vertex removal on the double domination number of a graph. A graph G is $γ_{×2}$-vertex critical graph ($γ_{×2}$-vertex stable graph, respectively) if the removal of any vertex different from a support vertex decreases (does not change, respectively) $γ_{×2}$(G). In this paper we investigate various properties of these graphs. Moreover, we characterize $γ_{×2}$-vertex critical trees and $γ_{×2}$-vertex stable trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 643-657
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weakly connected domination critical graphs
Autorzy:
Lemańska, M.
Patyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/255051.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
weakly connected domination number
tree
critical graphs
Opis:
A dominating set D ⊂ V(G) is a weakly connected dominating set in G if the subgraph G[D]w = (NG[D], Ew) weakly induced by D is connected, where Ew is the set of all edges with at least one vertex in D. The weakly connected domination number ϒw(G) of a graph G is the minimum cardinality among all weakly connected dominating sets in G. The graph is said to be weakly connected domination critical (ϒw-critical) if for each u, v ∈ V(G) with v not adjacent to u, ϒw(G + vu) < ϒw(G). Further, G is k- ϒw-critical if ϒw(G) = k and for each edge e ∉ E(G), ϒw(G + e) < k. In this paper we consider weakly connected domination critical graphs and give some properties of 3-ϒw,-critical graphs.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 325-330
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gallais innequality for critical graphs of reducible hereditary properties
Autorzy:
Mihók, Peter
Skrekovski, Riste
Powiązania:
https://bibliotekanauki.pl/articles/743466.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
additive induced-hereditary property of graphs
reducible property of graphs
critical graph
Gallai's Theorem
Opis:
In this paper Gallai's inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let $₁,₂,...,ₖ$ (k ≥ 2) be additive induced-hereditary properties, $ = ₁ ∘ ₂ ∘ ... ∘ₖ$ and $δ = ∑_{i=1}^k δ(_i)$. Suppose that G is an -critical graph with n vertices and m edges. Then 2m ≥ δn + (δ-2)/(δ²+2δ-2)*n + (2δ)/(δ²+2δ-2) unless = ² or $G = K_{δ+1}$. The generalization of Gallai's inequality for -choice critical graphs is also presented.
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 2; 167-177
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies