Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "coupled partial differential equations" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Shape sensitivity of optimal control for the Stokes problem
Autorzy:
Abdelbari, Merwan
Nachi, Khadra
Sokolowski, Jan
Szulc, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2049935.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
Stokes equations
optimal control problem
coupled partial differential equations
shape optimization
shape gradient
Opis:
In this article, we study the shape sensitivity of optimal control for the steady Stokes problem. The main goal is to obtain a robust representation for the derivatives of optimal solution with respect to smooth deformation of the flow domain. We introduce in this paper a rigorous proof of existence of the material derivative in the sense of Piola, as well as the shape derivative for the solution of the optimality system. We apply these results to derive the formulae for the shape gradient of the cost functional; under some regularity conditions the shape gradient is given according to the structure theorem by a function supported on the moving boundary, then the numerical methods for shape optimization can be applied in order to solve the associated optimization problems.
Źródło:
Control and Cybernetics; 2020, 49, 1; 11-40
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Topological sensitivity analysis for a coupled nonlinear problem with an obstacle
Autorzy:
Abdelbari, M.
Nachi, K.
Sokolowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/205653.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
topological derivative
shape optimization
SteklovPoincaroperator
Signorini problem
variational inequality
Helmholtz equation
coupled partial differential equations
conical differential
asymptotic expansions
singular perturbations of geometrical Romains
truncated domain
Opis:
The Topological Derivative has been recognized as a powerful tool in obtaining the optimal topology for several kinds of engineering problems. This derivative provides the sensitivity of the cost functional for a boundary value problem for nucleation of a small hole or a small inclusion at a given point of the domain of integration. In this paper, we present a topological asymptotic analysis with respect to the size of singular domain perturbation for a coupled nonlinear PDEs system with an obstacle on the boundary. The domain decomposition method, referring to the SteklovPoincar´epseudo-differential operator, is employed for the asymptotic study of boundary value problem with respect to the size of singular domain perturbation. The method is based on the observation that the known expansion of the energy functional in the ring coincides with the expansion of the Steklov-Poincar´e operator on the boundary of the truncated domain with respekt to the small parameter, which measures the size of perturbation. In this way, the singular perturbation of the domain is reduced to the regular perturbation of the Steklov-Poincar´e map ping for the ring. The topological derivative for a tracking type shape functional is evaluated so as to obtain the useful formula for application in the numerical methods of shape and topology optimization.
Źródło:
Control and Cybernetics; 2017, 46, 1; 5-25
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies