Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "corona product graphs" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Computing the Metric Dimension of a Graph from Primary Subgraphs
Autorzy:
Kuziak, Dorota
Rodríguez-Velázquez, Juan A.
Yero, Ismael G.
Powiązania:
https://bibliotekanauki.pl/articles/31342126.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
metric dimension
metric basis
primary subgraphs
rooted product graphs
corona product graphs
Opis:
Let G be a connected graph. Given an ordered set W = {w1, . . ., wk} ⊆ V (G) and a vertex u ∈ V (G), the representation of u with respect to W is the ordered k-tuple (d(u, w1), d(u, w2), . . ., d(u, wk)), where d(u, wi) denotes the distance between u and wi. The set W is a metric generator for G if every two different vertices of G have distinct representations. A minimum cardinality metric generator is called a metric basis of G and its cardinality is called the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-hard. In this paper we obtain closed formulae for the metric dimension of graphs with cut vertices. The main results are applied to specific constructions including rooted product graphs, corona product graphs, block graphs and chains of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 273-293
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs with Clusters Perturbed by Regular Graphs—Aα-Spectrum and Applications
Autorzy:
Cardoso, Domingos M.
Pastén, Germain
Rojo, Oscar
Powiązania:
https://bibliotekanauki.pl/articles/31546556.pdf
Data publikacji:
2020-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cluster
convex combination of matrices
corona product of graphs
Aα-spectrum
Opis:
Given a graph G, its adjacency matrix A(G) and its diagonal matrix of vertex degrees D(G), consider the matrix Aα(G) = αD(G) + (1 − α)A(G), where α ∈ [0, 1). The Aα -spectrum of G is the multiset of eigenvalues of Aα(G) and these eigenvalues are the α-eigenvalues of G. A cluster in G is a pair of vertex subsets (C, S), where C is a set of cardinality |C| ≥ 2 of pairwise co-neighbor vertices sharing the same set S of |S| neighbors. Assuming that G is connected and it has a cluster (C, S), G(H) is obtained from G and an r-regular graph H of order |C| by identifying its vertices with the vertices in C, eigenvalues of Aα(G) and Aα(G(H)) are deduced and if Aα(H) is positive semidefinite, then the i-th eigenvalue of Aα(G(H)) is greater than or equal to i-th eigenvalue of Aα(G). These results are extended to graphs with several pairwise disjoint clusters (C1, S1), . . ., (Ck, Sk). As an application, the effect on the energy, α-Estrada index and α-index of a graph G with clusters when the edges of regular graphs are added to G are analyzed. Finally, the Aα-spectrum of the corona product G ◦ H of a connected graph G and a regular graph H is determined.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 2; 451-466
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The General Position Problem on Kneser Graphs and on Some Graph Operations
Autorzy:
Ghorbani, Modjtaba
Maimani, Hamid Reza
Momeni, Mostafa
Mahid, Farhad Rahimi
Klavžar, Sandi
Rus, Gregor
Powiązania:
https://bibliotekanauki.pl/articles/32222714.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
general position set
Kneser graphs
Cartesian product of graphs
corona over graphs
line graphs
Opis:
A vertex subset S of a graph G is a general position set of G if no vertex of S lies on a geodesic between two other vertices of S. The cardinality of a largest general position set of G is the general position number (gp-number) gp(G) of G. The gp-number is determined for some families of Kneser graphs, in particular for K(n, 2), n ≥ 4, and K(n, 3), n ≥ 9. A sharp lower bound on the gp-number is proved for Cartesian products of graphs. The gp-number is also determined for joins of graphs, coronas over graphs, and line graphs of complete graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1199-1213
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies