Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "copy of $c_0$" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Asymptotically isometric copies of c0 in Musielak-Orlicz spaces
Autorzy:
Narloch, A.
Szymaszkiewicz, L.
Powiązania:
https://bibliotekanauki.pl/articles/255144.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Musielak-Orlicz space
Luxemburg norm
condition Delta2
asymptotically isometric copy of c0
Opis:
Criteria in order that a Musielak-Orlicz function space Lφ as well as Musielak-Orlicz sequence space lφ contains an asymptotically isometric copy of c0 are given. These results extend some results of [Y.A. Cui, H. Hudzik, G. Lewicki, Order asymptotically isometric copies of c0 in the subspaces of order continuous elements in Orlicz spaces, Journal of Convex Analysis 21 (2014)] to Musielak-Orlicz spaces.
Źródło:
Opuscula Mathematica; 2014, 34, 1; 161-169
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$
Autorzy:
Drewnowski, L.
Emmanuele, G.
Powiązania:
https://bibliotekanauki.pl/articles/1292917.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Banach space
isomorphic copy of $c_0$
spaces of vector measures
Bochner integrable functions
Radon-Nikodym property
uncomplemented subspace
Opis:
Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of $c_0$. Then the Bochner space $L^1(m;X)$ is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
Źródło:
Studia Mathematica; 1993, 104, 2; 111-123
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vector series whose lacunary subseries converge
Autorzy:
Drewnowski, Lech
Labuda, Iwo
Powiązania:
https://bibliotekanauki.pl/articles/1206244.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subseries convergence
lacunary subseries
zero-density subseries
lacunary convergence property
topological Riesz space of measurable functions
topological vector space of Bochner measurable functions
Lebesgue property
Levi property
copy of $c_0$
Opis:
The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series $∑_n x_n$ in a topological vector space X is called ℒ-convergent if each of its lacunary subseries $∑_k x_{n_k}$ (i.e. those with $n_{k+1} - n_k → ∞$) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence Property, or ZCP, is defined similarly though of lesser importance here. It is shown that for every ℒ-convergent series the set of all its finite sums is metrically bounded; however, it need not be topologically bounded. Next, a space with the LCP contains no copy of the space $c_0$. The converse holds for Banach spaces and, more generally, sequentially complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is constructed that has both the Lebesgue and Levi properties, and thus contains no copy of $c_0$, and, nonetheless, lacks the LCP. The main (and most difficult) result of the paper is that if a Banach space E contains no copy of $c_0$ and λ is a finite measure, then the Bochner space $L_0$ (λ,e) has the LCP. From this, with the help of some Orlicz-Pettis type theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of (scalar and vector) measurable functions that have the Lebesgue type property and are "metrically-boundedly sequentially closed" in the containing $L_0$ space. Analogous results about the convergence of ℒ-convergent positive series in topological Riesz spaces are also obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the converse is false, in general.
Źródło:
Studia Mathematica; 2000, 138, 1; 53-80
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies