Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "copper liner" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Hemispherical Zirconium Liner for Advanced Shaped Charge with Enhanced Behind Armour Effect
Autorzy:
Elshenawy, Tamer Abd Elazim
Elbasuney, Sherif
Powiązania:
https://bibliotekanauki.pl/articles/27787986.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
hollow charge
penetration
copper liner
zirconium liner
jet temperature
Opis:
Armour penetration is an essential outcome for shaped charges, especially when the behind-armour effect is considered. Hemispherical liners produce superior jet mass compared with those of traditional conical shape. In this paper two different materials have been studied as hemispherical shaped charge liners. The reference liner was hemispherical oxygen-free high-conductivity copper (OFHC); the other liner material was zirconium. These liners were experimentally tested against 4340 steel targets in shaped charges loaded with the same amount of Composition B explosive. Zirconium liners were found to offer superior performance with experimental penetration and crater diameter respectively 16% and 20% greater than OFHC. Ansys Autodyn hydrocode simulation results demonstrated that both liners produced superior jet masses exceeding 50% of the total liner mass. Moreover, zirconium had a jet tip velocity of 4869 m/s compared with 3886 m/s for OFHC. Additionally, zirconium had a superior average jet collapse to plastic deformation temperature ratio of 0.73 compared with 0.34 for OFHC. This is the first time the relation between the jet temperature during collapse and jet stretching has been reported.
Źródło:
Central European Journal of Energetic Materials; 2021, 18, 3; 293--321
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theoretical Modelling of Shaped Charges in the Last Two Decades (1990-2010): A Review
Autorzy:
Shekhar, H.
Powiązania:
https://bibliotekanauki.pl/articles/358365.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
copper liner
high explosives
jet formation
shaped charges
target penetration
Opis:
Shaped charges are used for the penetration of targets in all three dimensions of warfare - land, air and naval. With fillings of high explosives compositions inside, they generate a thin high velocity metal jet, which can perforate the targets. Shaped charges can penetrate tanks with thick armour protection, they can destroy bunkers, they can destroy aircraft and are also useful for attacking ships or submarines. Although shaped charges have a very long history since the Second World War, theoretical modelling efforts started with the steady state theory of Birkhoff in 1948. This theory was modified by the non-steady state theory known as the PER theory of shaped charges. Later, several contributions from experimental evidence were incorporated in the theoretical formulations, and the mathematical models were refined by including the virtual origin, and physical qualities of the jet breakup time, defragmentation into particulates time, the diameter of the metal jet, wave amplitude etc. To review the development of theoretical modelling of shaped charges, three stages are defined. The first is the development until 1990, when the theory of shaped charges was fully developed and penetration predictions with fairly good accuracy were possible. The second stage reviews work carried out in the last decade of the 20th century. During this period good experiments were planned, parametric study was carried out and the results incorporated in the mathematical model of shaped charges. The third stage is all work done in the 21st century (2000-2010), when the tools for advanced diagnostics, new fabrication and inspection, as well as new liner materials were incorporated. The anomalies obtained were resolved by further refinements in the developed theoretical models. The unexplored areas of the theoretical modelling of shaped charges are also enumerated in this paper.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 2; 155-185
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High Penetration Performance of Powder Metallurgy Copper-Tungsten Shaped Charge Liners
Autorzy:
Elshenawy, T.
Abdo, G.
Elbeih, A.
Powiązania:
https://bibliotekanauki.pl/articles/358754.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
penetration
copper-tungsten liner
RDX
jet formation
Autodyn
Opis:
Copper tungsten liner manufactured using uniaxial pressing technique has been characterized numerically and experimentally in comparison with a baseline shaped charge copper liner produced by deep drawing technique. The jet properties resulted from these two shaped charges were different according to their liner types and relevant densities which affect the resultant penetration depths into rolled homogeneous armour (RHA) targets. Different copper-tungsten powder liners have been studied and analysed using Autodyn hydrocode, from which an optimum powder design was chosen based on its maximum jet kinetic energy that can be coherent. The compacted liner elastic properties have been measured using SONELASTIC apparatus, whereas its real density is determined using helium gas pycnometer. Baseline copper liner obtained by deep drawing technique of uniform density exhibited lower penetration depth in comparison with the copper-tungsten liner (higher density powder). Besides, the penetration crater resulted from the powder liner showed clean hole without clogging because there was no massive slug as in the case of the copper liners. Experimental field tests of the two liners against (RHA) targets exhibited different penetrations depths, which have been accounted in this research.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 4; 610-628
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies