Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "convolution algebra" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Convolution algebras for topological groupoids with locally compact fibres
Autorzy:
Buneci, M. R.
Powiązania:
https://bibliotekanauki.pl/articles/254971.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
convolution algebra
groupoid
uniform continuity
Haar system
Opis:
The aim of this paper is to introduce various convolution algebras associated with a topological groupoid with locally compact fibres. Instead of working with continuous functions on G, we consider functions having a uniformly continuity property on fibres. We assume that the groupoid is endowed with a system of measures (supported on its fibres) subject to the "left invariance" condition in the groupoid sense.
Źródło:
Opuscula Mathematica; 2011, 31, 2; 159-172
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detailed Consideration of Graphical Calculation of Min-Plus Convolution in Deterministic Network Calculus
Autorzy:
Borys, A.
Powiązania:
https://bibliotekanauki.pl/articles/226084.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolution
network calculus
min-plus algebra
graphical construction of min-plus convolution
Opis:
The convolution operation used in deterministic network calculus differs from its counterpart known from the classic systems theory. A reason for this lies in the fact that the former is defined in terms of the so-called min-plus algebra. Therefore, it is oft difficult to realize how it really works. In these cases, its graphical interpretation can be very helpful. This paper is devoted to a topic of construction of the min-plus convolution curve. This is done here in a systematic way to avoid arriving at non-transparent figures that are presented in publications. Contrary to this, our procedure is very transparent and removes shortcomings of constructions known in the literature. Some examples illustrate its usefulness.
Źródło:
International Journal of Electronics and Telecommunications; 2018, 64, 2; 217-222
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Around Widders characterization of the Laplace transform of an element of $L^{∞}(ℝ^{+})$
Autorzy:
Kisyński, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1207972.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
operators from $L_{ϰ}^{1}(ℝ^{+})$ into a Banach space
complete monotonicity and positivity with respect to a cone
one-parameter semigroups of operators
vector measures
Gelfand space
Radon-Nikodym property
representations of the convolution algebra $L_{ϰ}^{1}(ℝ^{+})$
pseudoresolvents and their generators
real inversion formulas for the Laplace transform
Opis:
Let ϰ be a positive, continuous, submultiplicative function on $ℝ^{+}$ such that $lim_{t→∞} e^{-ωt}t^{-α}ϰ(t) = a$ for some ω ∈ ℝ, α ∈ $\overline{ℝ^{+}}$ and $a ∈ ℝ^{+}$. For every λ ∈ (ω,∞) let $ϕ_{λ}(t) =e^{-λt}$ for $t ∈ ℝ^{+}$. Let $L^{1}_{ϰ}(ℝ^{+})$ be the space of functions Lebesgue integrable on $ℝ^{+}$ with weight $ϰ$, and let E be a Banach space. Consider the map $ϕ_{•}: (ω,∞) ∋ λ → ϕ_{λ} ∈ L_{ϰ}^{1}(ℝ^{+})$. Theorem 5.1 of the present paper characterizes the range of the linear map $T → Tϕ_{•}$ defined on $L(L_{ϰ}^{1}(ℝ^{+});E)$, generalizing a result established by B. Hennig and F. Neubrander for $ϰ(t)=e^{ωt}$. If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder's characterization of the Laplace transform of a function in $L^{∞}(ℝ^{+})$. Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for $C_0$ semigroups $(S_t)_{t ∈ \overline{ℝ^{+}}}$ such that $sup_{t ∈ \overline{ℝ^{+}}} (ϰ(t))^{-1}∥ S_t∥ < ∞$.
Źródło:
Annales Polonici Mathematici; 2000, 74, 1; 161-200
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies