Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "conventional triaxial" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
AE test of calcareous sands with particle rushing
Autorzy:
Tan, F.
Wang, X.
Hu, M.
Wang, R.
Zhu, C.
Powiązania:
https://bibliotekanauki.pl/articles/259886.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
calcareous sands
accoustic emission
conventional triaxial
consolidated undrained
AE signal
particle crushing
Opis:
The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1) there was the AE activities on the low confining pressure condition at the beginnig of test, (2) there was more and more AE activities with the continuing of test until to the end, (3) the calcareous sands’ AE activities was on the whole testing, (4) the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed.
Źródło:
Polish Maritime Research; 2017, S 2; 118-124
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany osiowej sztywności i rozwój uszkodzenia próbek piaskowca w teście konwencjonalnego trójosiowego ściskania
The change of axial stiffness and the development of sandstone samples damage through the conventional triaxial tests
Autorzy:
Cieślik, J.
Jakubowski, J.
Tajduś, A.
Powiązania:
https://bibliotekanauki.pl/articles/350448.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
konwencjonalne badania trójosiowe
zmiany sztywności
proces zniszczenia
conventional triaxial tests
axial stiffness change
damage process
Opis:
W referacie zaprezentowano wyniki badań laboratoryjnych, w których analizowano zmiany osiowej sztywności próbek piaskowca poddanego konwencjonalnemu trójosiowemu ściskaniu. Założono iż opisem zjawisk powstawania i propagacji szczelin w skałach, na poziomie reprezentatywnej objętości, zajmuje się kontynualna mechanika uszkodzeń. Na podstawie przeprowadzonych badań i analizy zmian osiowej sztywności próbek, dla analizowanych ciśnień zdefiniowano zmienną uszkodzenia i wyznaczono warunek zapoczątkowania procesu uszkodzenia. Wyniki badań obrazują charakter dwóch różnych procesów zniszczenia.
Results of laboratory investigations focusing on change of axial stiffness of sandstone samples made under a conventional triaxial compression test conditions has been presented in this paper. It was assumed, that fracture propagation and damage process of rock samples on representative volume element level follows continuum damage mechanics laws. Based on investigations and analysis of axial stiffness change of sandstone samples for applied confining pressures, a damage variable was determined and the condition for the initiation of damage process was proposed. The results of investigations show a phenomenon of two different failure processes.
Źródło:
Górnictwo i Geoinżynieria; 2011, 35, 2; 163-170
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badania wybranych skał Polski w warunkach wysokiego ciśnienia i temperatury
Methods of studying of selected rocks in Poland under conditions of high pressure and temperature
Autorzy:
Dziedzic, A.
Łukaszewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/2063095.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
konwencjonalne trójosiowe ściskanie
prędkość fali podłużnej
ultradźwięki
wytrzymałość skał
odkształcenia skał
metrologia
conventional triaxial compression
longitudinal wave velocity
ultrasonics
rock strength
rock strain
metrology
Opis:
W artykule przedstawiono opis metodyki badań wytrzymałościowych skał w warunkach wysokiego ciśnienia i temperatury. Badania wytrzymałościowe prowadzono w warunkach konwencjonalnego trójosiowego ściskania z równoczesną rejestracją zmian prędkości fali ultradźwiękowej. Zestaw badawczy wykorzystywany w Zakładzie Geomechaniki UW, składający się ze sztywnej prasy wytrzymałościowej wyposażonej w komorę termociśnieniową oraz z ultradźwiękowego systemu pomiarowego, umożliwia automatyczną, zsynchronizowaną rejestrację zmian naprężenia, odkształcenia oraz prędkości fali podłużnej w próbkach skalnych poddanych ściskaniu w komorze termociśnieniowej. Dzięki zastosowaniu opisanej metodyki możliwe jest porównanie uzyskanych danych z wynikami geofizycznych badań in situ.
The study presents methodology for rock testing in conventional triaxial conditions with simultaneous recording of longitudinal wave speed velocity. Assembled at Department of Geomechanics of Warsaw University, the testing unit consists of a rigid strength press equipped with thermal pressure vessel and ultrasonic measuring system. Testing set is able to records automatically the changes of stress, strain and longitudinal wave velocity during strength test conducted in the thermal pressure vessel. Described methodology allows comparing obtained data with in situ geophysical investigations.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2011, 446 (1); 123--128
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The law of effective stress for rocks in light of results of laboratory experiments
Prawo naprężeń efektywnych dla skał w świetle wyników badań laboratoryjnych
Autorzy:
Nowakowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/219996.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prawo naprężeń efektywnych
konwencjonalne naprężenie efektywne
równanie ciśnienia efektywnego
wartość ciśnienia efektywnego
teoria Biota
współczynnik Biota
test ściśliwości
test trójosiowego ściskania
effective stress law
conventional effective stress law
effective pressure equation
effective pressure value
Biot theory
Biot coefficient
compressibility test
triaxial compression test
Opis:
This paper presents the results of laboratory tests carried out in order to formulate effective stress law. The law was sought for two different cases: first - when rock was treated as a porous Biot medium (Biot, 1941; Nur & Byerlee, 1971) and second - when the law was formulated according to definition of Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second one effective pressure equation (9) and effective pressure value (11) were found on the basis of results of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology given by Nowakowski (2007). On the basis of Biot coefficients set of values was found that volumetric strain of the pore space described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture of rock were important. The individual triaxial compression test results showed that for tested rock an effective pressure equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Lichtman, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This happened particularly in the case when the porous fluid was non-inert carbon dioxide. In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation (15) decreased while the differential strength limit was increasing. This might be caused by, so called, dillatancy strengthening (see Zoback & Byerlee, 1975). Another considered important parameter of the equation (15) was the value of the effective press p'. The results showed that the value of this parameter was practically independend on the pore fluid type. This conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 1990) so these results should be treated with caution. There are no doubts, however, over p' increasing simultaneously with increase in Rσ1-σ3. Basically, the differential strength limit of the specimen is greater the greater is confining pressure applied to it. Thus, higher Rσ1-σ3 values are accompanied by higher p'.
W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byerlee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) oraz wartości ciśnienia efektywnego (11). Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi (dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyznaczano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 9166. Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego ściskania (ang. „individual test” - por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprężenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1-σ3. Przedmiotem badań były próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące). Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunkowane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika w zależności od tego czy medium porowym jest ciecz, czy gaz. Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowakowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera (Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu (por. także Hołda, 1990). Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1-σ3 tym wyższa wartość α, czyli tym silniej manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p - pp (Gustkiewicz, 1990). Wzrostowi temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien się okazać dla wyższych wartości Rσ1-σ3 znacząco większy. W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań sugerują, że wartość współczynnika α maleje ze wzrostem Rσ1-σ3. Przyczyną może tu być tzw. Wzmocnienie dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia porowego na wartość Rσ1-σ3. ulegnie zmniejszeniu, co powinno dać α < 1. Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W rozważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które - zastosowane do skały dla pp = 0 - da w efekcie taka samą wartość Rσ1-σ3 jak para niezerowych ciśnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1-σ3 = const. dla danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną natomiast ze wzrostem Rσ1-σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1-σ3 towarzyszą wyższe wartości p'.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 1027-1044
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies