- Tytuł:
- Supervisory optimal control using machine learning for building thermal comfort
- Autorzy:
-
Abdufattokhov, Shokhjakhon
Mahamatov, Nurilla
Ibragimova, Kamila
Gulyamova, Dilfuza
Yuldashev, Dilyorjon - Powiązania:
- https://bibliotekanauki.pl/articles/2204083.pdf
- Data publikacji:
- 2022
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
building thermal comfort
Gaussian processes
machine learning
model predictive control - Opis:
- For the past few decades, control and building engineering communities have been focusing on thermal comfort as a key factor in designing sustainable building evaluation methods and tools. However, estimating the indoor air temperature of buildings is a complicated task due to the nonlinear and complex building dynamics characterised by the time-varying environment with disturbances. The primary focus of this paper is designing a predictive and probabilistic room temperature model of buildings using Gaussian processes (GPs) and incorporating it into model predictive control (MPC) to minimise energy consumption and provide thermal comfort satisfaction. The full probabilistic capabilities of GPs are exploited from two perspectives: the mean prediction is used for the room temperature model, while the uncertainty is involved in the MPC objective not to lose the desired performance and design a robust controller. We illustrated the potential of the proposed method in a numerical example with simulation results.
- Źródło:
-
Operations Research and Decisions; 2022, 32, 4; 1--15
2081-8858
2391-6060 - Pojawia się w:
- Operations Research and Decisions
- Dostawca treści:
- Biblioteka Nauki