- Tytuł:
- J-energy preserving well-posed linear systems
- Autorzy:
- Staffans, O. J.
- Powiązania:
- https://bibliotekanauki.pl/articles/908123.pdf
- Data publikacji:
- 2001
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
układ zachowawczy
system liniowy
równanie Lyapunova
równanie różniczkowe Riccatiego
well-posed linear systems
system node
transfer function
Lax-Phillips semigroup
dissipative systems
conservative system
model theory
conservative realization
J-energy-preserving system
Lyapunov equations
Riccati equation - Opis:
- The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The class of well-posed linear systems contains most linear time-independent distributed parameter systems: internal or boundary control of PDE's, integral equations, delay equations, etc. These systems have existed in an implicit form in the mathematics literature for a long time, and they are closely connected to the scattering theory by Lax and Phillips and to the model theory by Sz.-Nagy and Foias. The theory has been developed independently by many different schools, and it is only recently that these different approaches have begun to converge. One of the most interesting objects of the present study is the Riccati equation theory for this class of infinite-dimensional systems (H2- and Hinfty-theories).
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2001, 11, 6; 1361-1378
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki