Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "computational fluid flow analysis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A computational fluid flow analysis of a disc valve system
Autorzy:
Czop, P.
Śliwa, P.
Gniłka, J.
Gąsiorek, D.
Wszołek, G.
Powiązania:
https://bibliotekanauki.pl/articles/244640.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
valve system
computational fluid flow analysis
simulation
Opis:
Noise concerns in shock absorbers can be divided into two categories. The first is fluid flow noise, or “swish noise”, caused by the oil being forced through openings in the valves. The type and temperature of the oil, its velocity and the orifice geometry all have an effect on this. In addition, the structural design of the shock absorber shell may either reduce or amplify the noise. The second type of shock absorber noise is often described as regular operational noise or “chuckle noise”. It can be observed in vehicles during low-displacement, higher-frequency events, such as driving over a slightly rough road. This effect measurable as a force discontinuity into the vehicle and can come from a number of sources in the shock absorber, e.g. hydraulic transitions. It is often traceable to the valve discs closing and opening, but can also be caused by cavitation/aeration in the oil and air being pulled through the valves. The work on noise improvement reported in this paper has been started using conventional shock absorbers to be extended and will cover in the future variable damping shock systems as well. The paper gives an overview about the configurations of a typical valve system including three basic regimes of operation, which correspond to the amount of oil flowing through a valve cavity. The aim of this work was to propose a finite element fluid flow model, which can be used in order to reduce the velocity of fluid flow through a cavity of a shock absorber valve. High flow velocity can cause high-content frequency vibrations and, in turn, audible noise. The model will be used for initial screening of new valve concepts and on the other hand to improve the currently use ones.
Źródło:
Journal of KONES; 2011, 18, 1; 117-122
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energetic efficiency of mixing in a periodically reoriented Dean flow
Autorzy:
Rożeń, Antoni
Kopytowski, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/2086805.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational fluid dynamics
laminar flow
chaotic advection
curvilinear pipe
time analysis
obliczeniowa dynamika płynów
przepływ laminarny
rura krzywoliniowa
analiza czasu
Opis:
The energetic efficiency of mixing is studied numerically in a continuous flow mixer constructed from a sequence of alternately twisted pipe bends. Counter-rotating vortices present in the curved channels and known as Dean vortices narrow the distribution of the residence time of fluid elements and accelerate the generation of a new material surface without obstructing the main flow and increasing the risk of fouling or flow stoppage. Cyclic twisting of the pipe curvature allows for quick reorientation of Dean vortices. The reorientation induces chaotic advection in a stable three-dimensional flow and speeds up mixing. The effect of computational domain discretisation for the low and medium Reynolds numbers (20 < Re < 2000º on the head loss, primary and secondary flow, residence time distribution, and the energetic efficiency of generation of the inter material surface is determined. The energetic efficiency is calculated in the time space, a standard approach in modelling reactive micromixing, and at the reactor exit. The maximum energetic efficiency is determined for Re = 600 : 700. It is also found that the initial orientation of the material surface to the pipe curvature has a significant impact on the energetic efficiency of mixing.
Źródło:
Chemical and Process Engineering; 2021, 42, 4; 391--410
0208-6425
2300-1925
Pojawia się w:
Chemical and Process Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies