Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "cluster points" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On generalized difference rough ideal convergent of triple sequence defined by Musielak-Orlicz function
Autorzy:
Esi, A.
Subramanian, N.
Powiązania:
https://bibliotekanauki.pl/articles/1031638.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Wijsman rough convergence
cluster points
strongly admissible ideal
triple sequences
Opis:
We introduce a rough ideal convergent of triple sequence spaces defined by Musielak-Orlicz function, using an four dimensional infinite matrix and a generalized difference Zweier matrix operator B_((abc))^p of order p. We obtain some topological and algebraic properties of these spaces.
Źródło:
World Scientific News; 2020, 146; 139-151
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A proposal of a new method of choosing starting points for k-means grouping
Propozycja nowej metody wyboru punktów startowych do grupowania metodą k-średnich
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/907035.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
cluster analysis
starting points
silhouette indices
k-means method
Opis:
When one groups set elements with the help of k-means it is crucial to choose starting points properly. If they are chosen incorrectly one may arrive at badly grouped elements. In the paper a new method of choosing starting points is proposed. It is based on the distance matrix only. Starting points are chosen so as to improve the classical method of choosing points which are as far from one another as possible. The quality of grouping is assessed by means of silhouette indices — it is compared with the quality of grouping done with randomly chosen starting points and with maximum distance interval method. Sets from Euclidean spaces are generated with the help of CLUSTGEN software written by J. Milligana.
Gdy grupujemy punkty zbioru metodą k-średnich to zasadniczym problemem jest właściwy wybór punktów startowych. Jeśli są one źle wybrane to grupowanie może być złe. W artykule zaproponowana jest nowa metoda wyboru punktów startowych. Metoda ta jest oparta wyłącznie na znajomości macierzy odległości. Punkty startowe są wybierane tak, by poprawić wybór, który otrzymamy przy pomocy metody klasycznej polegającej na wyborze punktów możliwie jak najbardziej od siebie oddalonych. Jakość grupowania jest oceniana przy pomocy indeksów sylwetkowych - porównywana jest z jakością grupowania otrzymanego przy losowym wyborze punktów startowych oraz przy wyborze metodą klasyczną. Zbiory z przestrzeni euklidesowych są generowane przy pomocy programu CLUSTGEN autorstwa J. Milligana.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2008, 216
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies