- Tytuł:
-
Wykorzystanie danych lotniczego skaningu laserowego do klasyfikacji pokrycia terenu dla modelowania hydrodynamicznego
The use of airborne laser scanning data to land cover supervised classification for hydrodynamic modelling - Autorzy:
-
Tymków, P.
Borkowski, A. - Powiązania:
- https://bibliotekanauki.pl/articles/129560.pdf
- Data publikacji:
- 2006
- Wydawca:
- Stowarzyszenie Geodetów Polskich
- Tematy:
-
digital terrain model (DTM)
lotniczy skaning laserowy
klasyfikacja nadzorowana
sztuczna sieć neuronowa
numeryczny model terenu
modelowanie hydrodynamiczne
airborne laser scanning (ALS)
supervised classification
artificial neural network
hydrodynamic modelling - Opis:
-
Badania nad problematyką zapobiegania powodzi wymagają budowy modeli matematycznych przepływów wezbraniowych. Obliczenia hydrodynamiczne wykonywane są w oparciu o dane charakteryzujące geometrię doliny rzeki oraz opory przepływu, które zależą od pokrycia terenu. W artykule podjęto próbę wykorzystania danych lotniczego skaningu laserowego, wykonanego na potrzeby budowy numerycznego modelu terenu (NMT) dla modelowania hydrodynamicznego, do automatycznej nadzorowanej klasyfikacji pokrycia terenu. Klasyfikację tę oparto o wielowarstwowe sztuczne sieci neuronowe typu feed-forward. Wektor cech klasyfikowanych obiektów (klasyfikacja per-piksel) stanowiły dane o wysokości form pokrycia terenu, kolorowe zdjęcia lotnicze, dane charakteryzujące teksturę obszarów na zdjęciach oraz intensywność odbicia fali elektromagnetycznej skaningu laserowego. Wysokości form pokrycia terenu obliczone zostały na podstawie NMT i numerycznego modelu pokrycia terenu (NMPT) wygenerowanego z danych skaningu lotniczego. Niemetryczne zdjęcia lotnicze wykonane aparatem cyfrowym, poddane kalibracji i mozaikowaniu, stanowiły źródło informacji o jasności odbicia światła obiektów oraz były podstawą obliczeń teksturowych opartych o metodę macierzy sąsiedztwa (GLCM). Jako wektory uczące sieci neuronowej wybrano dziesięć pól testowych o powierzchni 400 m², w tym pięć klas roślinności wysokiej. Otrzymane rezultaty przedstawiono w formie graficznej oraz wykonano ilościową ocenę zgodności wyników z klasyfikacją przeprowadzoną w sposób manualny. Obliczone w tym celu wartości współczynnika κ potwierdzają dużą zgodność wyników klasyfikacji automatycznej z oczekiwanym rezultatem.
Flood protection research requires building mathematic models of flood flows. Hydraulic calculations are carried out on the basis of geometrical description of the valley as well as on surface roughness which depends on a land cover. Currently, geometric description of the modeling area in the form of cross-sections is often replaced with a digital terrain model (DTM). The data which is required to build DTM can be collected with photogrammetry or the airborne laser scanning method. An attempt at using airborne laser scanning data which was made for DTM and digital surface model (DSM) interpolation, for supervised classification of land cover was discussed. The classification was based on feed-forward artificial neural networks. Two cases were investigated: variant I - overall classification using one artificial neural network with 2 hidden layers of 10 neurons and variant II - individual recognition using different networks with one hidden layer of 10 neurons for each class. The feature vector of classified object (per-pixel classification) included: data concerning vegetation height, color aerial photographs, texture features and laser wave intensities. Heights of vegetation were calculated on the basis of DTM and DSM which were created for hydrodynamic modelling. Non-metric aerial photographs were taken by digital camera. After calibration and mosaic they served as sources of information about the lightness of objects. It was also a basis of GLCM (Grey Level Co-occurrence Matrix) texture feature calculations. Ten training fields of 400 m² were chosen as training vectors. Five of them represented various types of high vegetation. The collected data were visualized and computed numerically. A Kappa (κ) coefficient built on the basis of a confusion matrix was used for the quantitative assessment. The high similarity of the obtained results and reference data was confirmed by the value of the calculated kappa coefficient. Better results were obtained for individual classification (variant II) when the kappa value was 0.86. - Źródło:
-
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 537-546
2083-2214
2391-9477 - Pojawia się w:
- Archiwum Fotogrametrii, Kartografii i Teledetekcji
- Dostawca treści:
- Biblioteka Nauki