Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "class noise" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Technical Notes : Practical Concerns Associated with Single-Number Ratings in Measuring Sound Transmission Loss Properties of Partition Panels
Autorzy:
Garg, N.
Kumar, A.
Maji, S.
Powiązania:
https://bibliotekanauki.pl/articles/177637.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Sound Transmission Loss
Sound Transmission Class
spectrum adaptation terms
ISO 717-1
weighted sound reduction index
spectrum adaptation term corresponding to noise source
Cx
TL
STC
Opis:
The paper presents an extensive review investigating the practical aspects related to the use of single- number ratings used in describing the sound insulation performance of partition wall panels and practical complications encountered in precise measurements in extensive frequency range from 50 Hz to 5 kHz. SWOT analysis of various single number ratings is described. A laboratory investigation on a double wall partition panel combination revealed the significant dependence of STC rating on transmission loss at 125 Hz attributed to 8 dB rule. An investigation conducted on devising alternative spectrums of aircraft noise, traffic noise, vehicular horn noise and elevated metro train noise as an extension to ISO 717-1 Ctr for ascertaining the sound insulation properties of materials exclusively towards these noise sources revealed that the single-number rating Rw + Ctr calculated using ISO 717-1 Ctr gives the minimum sound insulation, when compared with Rw + Cx calculated using the alternative spectrums of aircraft noise, traffic noise, etc., which means that material provides a higher sound insulation to the other noise sources. It is also observed that spectrum adaptation term Cx calculated using the spectrum of noise sources having high sound pressure levels in lower frequencies decreases as compared to ISO 717-1 Ctr owing to significant dependence of Ctr at lower frequencies.
Źródło:
Archives of Acoustics; 2013, 38, 1; 115-124
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling class label noise in medical pattern classification systems
Autorzy:
Sáez, J. A.
Krawczyk, B.
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333813.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
machine learning
pattern classification
class noise
noise filtering
decision support systems
uczenie maszynowe
klasyfikacja wzorców
filtracja zakłóceń
filtracja szumów
systemy wspomagania decyzji
Opis:
Pattern classification systems play an important role in medical decision support. They allow to automatize and speed-up the data analysis process, while being able to handle complex and massive amounts of information and discover new knowledge. However, their quality is based on the classification models built, which require a training set. In supervised classification we must supply class labels to each training sample, which is usually done by domain experts or some automatic systems. As both of these approaches cannot be deemed as flawless, there is a chance that the dataset is corrupted by class noise. In such a situation, class labels are wrongly assigned to objects, which may negatively affect the classifier training process and impair the classification performance. In this contribution, we analyze the usefulness of existing tools to deal with class noise, known as noise filtering methods, in the context of medical pattern classification. The experiments carried out on several real-world medical datasets prove the importance of noise filtering as a pre-processing step and its beneficial influence on the obtained classification accuracy.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 123-130
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies