Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "chromatic spectrum" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
More Results on The Smallest One-Realization of A Given Set II
Autorzy:
Diao, Kefeng
Lu, Fuliang
Zhao, Ping
Powiązania:
https://bibliotekanauki.pl/articles/31343431.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
mixed hypergraph
feasible set
chromatic spectrum
gap
onerealization
Opis:
Let S be a finite set of positive integers. A mixed hypergraph ℋ is a onerealization of S if its feasible set is S and each entry of its chromatic spectrum is either 0 or 1. The minimum number of vertices, denoted by δ3(S), in a 3-uniform bi-hypergraph which is a one-realization of S was determined in [P. Zhao, K. Diao and F. Lu, More result on the smallest one-realization of a given set, Graphs Combin. 32 (2016) 835–850]. In this paper, we consider the minimum number of edges in a 3-uniform bi-hypergraph which already has the minimum number of vertices with respect of being a minimum bihypergraph that is one-realization of S. A tight lower bound on the number of edges in a 3-uniform bi-hypergraph which is a one-realization of S with δ3(S) vertices is given.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 473-487
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
K3-WORM Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum
Autorzy:
Bujtás, Csilla
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/31340789.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
WORM coloring
lower chromatic number
feasible set
gap in the chromatic spectrum
Opis:
A K3-WORM coloring of a graph G is an assignment of colors to the vertices in such a way that the vertices of each K3-subgraph of G get precisely two colors. We study graphs G which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer. 219 (2014) 161-173] by proving that for every integer k ≥ 3 there exists a K3-WORM-colorable graph in which the minimum number of colors is exactly k. There also exist K3-WORM colorable graphs which have a K3-WORM coloring with two colors and also with k colors but no coloring with any of 3, . . ., k − 1 colors. We also prove that it is NP-hard to determine the minimum number of colors, and NP-complete to decide k-colorability for every k ≥ 2 (and remains intractable even for graphs of maximum degree 9 if k = 3). On the other hand, we prove positive results for d-degenerate graphs with small d, also including planar graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 759-772
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies