Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "charakterystyka sieci" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Networking and the competitive advantage of supply chains
Autorzy:
Świerczek, Artur
Powiązania:
https://bibliotekanauki.pl/articles/324707.pdf
Data publikacji:
2019
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
network competitive advantage
network characteristics
supply chains
sieciowa przewaga konkurencyjna
charakterystyka sieci
łańcuchy dostaw
Opis:
The paper seeks to elaborate on the competitive advantage of supply chains from the perspective of networking that is employed in a twofold sense. First, it is used to explore the issue of network competitive advantage, which is considered to deliver benefits to all major actors constituting the supply chains, while in the second sense networking is brought to demonstrate whether actors, as well as relationships formed by these actors, possess the necessary characteristics to deliver the network competitive advantage. Based on this conceptual reasoning, we then deliver theoretical propositions that assist in deeper understanding of how the network characteristics of supply chains can contribute to deriving the network competitive advantage of supply chains. Specifically, the study shows that most of these characteristics have a positive impact on the value of network rent. Likewise, the paper also points out that the specific characteristics of networking are mutually interdependent and remain in intermeshing and overlapping relationships. As a consequence, the independent variables, when considered holistically, may mutually interact in such a way that they may produce contradictory outcomes.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2019, 135; 191-206
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Torque characteristic of SI engine in dynamic operating states
Autorzy:
Bera, P.
Powiązania:
https://bibliotekanauki.pl/articles/133593.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
engine torque
dynamic states
engine characteristics
artificial neural network
moment obrotowy silnika
stany dynamiczne
charakterystyka silnika
sztuczne sieci neuronowe
Opis:
The article presents torque characteristic of the engine in dynamic operating conditions as a function of engine speed and throttle opening angle. All mentioned parameters are analyzed as independent variables over time. To develop such a characteristic an artificial neural network is used. The training data were obtained from measurements carried out on the test bench on SI engine. The operating states reflect all possible configurations of these parameters, which may occur during use of the vehicle in real traffic conditions. The article shows design of an artificial neural network that allows to designate the required dependences. Moreover, it describes the fit of the model to the measurement data, which clearly indicates its correctness. Then the developed characteristic in dynamic states is compared with the characteristic in static working states. The differences between them for selected cases of engine operation states are presented. It shows the versatility of the presented method.
Źródło:
Combustion Engines; 2017, 56, 4; 175-180
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regression Using Machine Learning and Neural Networks for Studying Tribological Properties of Wear-Resistant Layers
Zastosowanie regresji z wykorzystaniem uczenia maszynowego i sieci neuronowych w badaniach właściwości tribologicznych warstw trudnościeralnych
Autorzy:
Malinowski, Paweł
Kasińska, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/2116061.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
machine learning
neural networks
regression
tribology
tribological characteristics
wear indicators
uczenie maszynowe
sieci neuronowe
regresja
tribologia
charakterystyka tribologiczna
wskaźniki zużycia
Opis:
Artificial intelligence is becoming commonplace in various research and industrial fields. In tribology, various statistical and predictive methods allow an analysis of numerical data in the form of tribological characteristics and surface structure geometry, to mention just two examples. With machine learning algorithms and neural network models, continuous values can be predicted (regression), and individual groups can be classified. In this article, we review the machine learning and neural networks application to the analysis of research results in a broad context. Additionally, a case study is presented for selected machine learning tools based on tribological tests of padding welds, from which the tribological characteristics (friction coefficient, linear wear) and wear indicators (maximum wear depth, wear area) were determined. The study results were used in exploratory data analysis to establish the correlation trends between selected parameters. They can also be the basis for regression analysis using machine learning algorithms and neural networks. The article presents a case study using these approaches in the tribological context and shows their ability to accurately and effectively predict selected tribological characteristics.
Zastosowanie sztucznej inteligencji w różnych dziedzinach nauki i przemysłu jest coraz bardziej powszechne. Duża różnorodność metod statystycznych i predykcyjnych umożliwia użycie ich również w tribologii. Analiza danych liczbowych w postaci charakterystyk tribologicznych, struktury geometrycznej powierzchni oraz wielu innych wymaga zastosowania narzędzi informatycznych oraz statystycznych. Wykorzystanie algorytmów uczenia maszynowego i budowanie modelu sieci neuronowej umożliwi prognozowanie wartości ciągłych (regresja) oraz klasyfikowanie poszczególnych grup. W artykule autorzy dokonują przeglądu możliwości aplikacyjnych algorytmów uczenia maszynowego i sieci neuronowych do analizy wyników badań w szerokim kontekście. Dodatkowo zaprezentowano studium przypadku dla wybranych narzędzi uczenia maszynowego na podstawie przykładowych badań tribologicznych napoin, dla których przeprowadzono testy, w których wyznaczono charakterystyki tribologiczne (współczynnik tarcia, zużycie liniowe) oraz wskaźniki zużycia (maksymalna głębokość wytarcia, pole wytarcia). Wyniki badań były podstawą do przeprowadzenia analizy eksploracyjnej i posłużyły do wykazania korelacji pomiędzy wybranymi parametrami. Autorzy przekonują, że mogą one być podstawą do analizy regresji z wykorzystaniem algorytmów uczenia maszynowego i sieci neuronowych. W artykule zaprezentowano studium przypadku z wykorzystaniem tych podejść w kontekście tribologicznym oraz pokazano ich zdolność do dokładnego i skutecznego przewidywania wybranych charakterystyk tribologicznych.
Źródło:
Tribologia; 2022, 1; 57--64
0208-7774
Pojawia się w:
Tribologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of longitudinal aerodynamic characteristics of a strake-wing micro aerial vehicle by using artificial neural networks
Autorzy:
Rykaczewski, Dariusz
Nowakowski, Mirosław
Sibilski, Krzysztof
Wróblewski, Wiesław
Garbowski, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2086856.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
water tunnel measurements
neural networks
unsteady aerodynamic characteristics
low Reynolds number aerodynamics
pomiary w tunelu wodnym
sieci neuronowe
niestabilna charakterystyka aerodynamiczna
niska aerodynamika liczby Reynoldsa
Opis:
Appropriate modeling of unsteady aerodynamic characteristics is required for the study of aircraft dynamics and stability analysis, especially at higher angles of attack. The article presents an example of using artificial neural networks to model such characteristics. The effectiveness of this approach was demonstrated on the example of a strake-wing micro aerial vehicle. The neural model of unsteady aerodynamic characteristics was identified from the dynamic test cycles conducted in a water tunnel. The aerodynamic coefficients were modeled as a function of the flow parameters. The article presents neural models of longitudinal aerodynamic coefficients: lift and pitching moment as functions of angles of attack and reduced frequency. The modeled and trained aerodynamic coefficients show good consistency. This method manifests great potential in the construction of aerodynamic models for flight simulation purposes.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137508, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technik sztucznych sieci neuronowych do predykcji wybranych parametrów jako uzupełnienia zbioru danych wejściowych w konstrukcji modeli parametrycznych 3D
The use of artificial neural network techniques to predict selected parameters as a supplement to the input data set in the construction of 3D parametric models
Autorzy:
Kaczmarczyk, Weronika
Brodzicki, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2143629.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
predykcja 1D
sieci neuronowe
estymacja parametryczna
modelowanie 3D
charakterystyka złoża węglowodorów
1D prediction
artificial neural network
parametrical estimation
3D modeling
hydrocarbon reservoir characterization
Opis:
W artykule przedstawiono możliwości wykorzystania sztucznych sieci neuronowych (SSN) do predykcji parametrycznej w profilach otworów wiertniczych, której zastosowanie uzupełniło zestaw informacji we wszystkich otworach wiertniczych zlokalizowanych w obrębie analizowanego obszaru. Zaprezentowana w artykule metodologia może być użyta w przypadku braku możliwości specjalistycznej interpretacji krzywych geofizyki wiertniczej, uzupełniającej brakujące dane. Zestaw wykorzystanych w pracy danych obejmował rozwiązania w profilach 10 otworów wiertniczych, z których cztery otwory charakteryzowały się pełnym zestawem danych analizowanych w ramach niniejszego artykułu, obejmujących prędkość fali podłużnej, porowatość efektywną, nasycenie węglowodorami, moduł Younga i współczynnik Poissona. Wykorzystując technikę działania sztucznych sieci neuronowych, przeprowadzono predykcję brakujących informacji, bazując na relacjach pomiędzy analizowanymi parametrami w otworach, gdzie estymowane dane były dostępne. W ostatnich latach obserwuje się dynamiczny rozwój technologii szeroko pojętego uczenia maszynowego (ang. machine learning) i tak zwanej sztucznej inteligencji. Niewiele pozostaje dziedzin nauki, w których nie miałyby one zastosowania. Tak jest również w branży naftowo-gazowniczej. Parametr nasycenia węglowodorami, pomimo wyzwań, jakie niesie za sobą interpretacja tego parametru, również został poddany próbie estymacji, potwierdzając niskimi wartościami korelacji pomiędzy analizowanymi parametrami, że wymaga zdecydowanie bardziej zaawansowanych prac o indywidualnym charakterze. Wyniki predykcji parametrycznej, poddane wcześniej walidacji poprzez charakterystykę parametrów R (różnica pomiędzy wartością rzeczywistą a estymowaną) i RMSE (pierwiastek błędu średniokwadratowego), zostały w kolejnym kroku zaaplikowane w procesie modelowania przestrzennego wszystkich analizowanych parametrów. Finalnie, w celu wizualizacji różnic pomiędzy wykorzystaniem niepełnego i po części estymowanego zestawu danych w analizie przestrzennej, zaprezentowano mapę średnich wartości wybranego parametru w obrębie analizowanego interwału stratygraficznego. Tak przygotowany zestaw danych pozwolił na bardziej wiarygodne odtworzenie przestrzenne rozkładu parametrów istotnych w kontekście charakterystyki złoża węglowodorów, na podstawie którego w kolejnych etapach możliwa jest wiarygodniejsza ocena potencjału złożowego analizowanego obiektu. Zaprezentowana w artykule metodyka, oparta na rozwiązaniu rzeczywistego problemu badawczego, stanowi alternatywę, dla koszto- i czasochłonnych interpretacji geofizycznych, niekiedy znacznych liczb otworów wiertniczych, szczególnie dla obszarów charakteryzujących się relatywnie niewielką przestrzenną zmiennością i złożonością tektoniczną. Warunkiem jest dostępność interpretacji danych geofizyki wiertniczej w co najmniej kilku otworach stanowiącej wzorzec dla odtworzenia zmienności badanego parametru/parametrów w pozostałych profilach otworów wiertniczych.
The article presents the possibilities of using artificial neural networks for parametric prediction in borehole profiles, the application of which supplemented the set of information in all boreholes located within the analyzed area. The approach presented in the article will be used when there is no possibility of specialized interpretation of the drilling geophysics curves, supplementing the missing data. The set of data used in the study included solutions in the profiles of 10 boreholes, four of which were characterized by the availability of the full data set analyzed in this article, including compressional wave velocity, effective porosity, hydrocarbon saturation, Young’s modulus and Poisson’s ratio. Using the technique of the operation of artificial neural networks, a prediction of missing information was carried out based on the relationships between the analyzed parameters in the wells, where the estimated data was available. In recent years, there has been a dynamic development of machine learning technology and the so-called artificial intelligence. There are very few fields of science in which they find no application. The hydrocarbon saturation parameter, despite the challenges posed by the interpretation of this parameter, was also subjected to an estimation attempt, confirming the low correlation values between the analyzed parameters and requiring much more advanced work of an individual nature. The results of parametric prediction, previously validated by characterizing the R and RMSE parameters, were applied in the next step in the spatial modeling process of all analyzed parameters. Finally, as part of the visualization of the differences between the use of an incomplete and partially estimated data set in spatial analysis, a map of mean values of the selected parameter within the analyzed interval was presented. The set of data prepared in this way allowed for a more reliable spatial reconstruction of the distribution of parameters important in the context of the characteristics of the hydrocarbon reservoir, on the basis of which, in the subsequent stages, it is possible to more fully assess the deposit potential of the analyzed object. The methodology presented in the article, supported by a real case study, is an alternative to geophysical interpretations that require financial and time resources, sometimes large numbers of boreholes, especially for areas characterized by relatively low spatial variability and tectonic complexity. The condition is the availability of the interpretation in at least several boreholes, constituting a pattern for recreating the variability of the tested parameter / parameters in the remaining profiles of the boreholes.
Źródło:
Nafta-Gaz; 2021, 77, 7; 429-445
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies