Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "channel prediction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Fading Channel Prediction for 5G and 6G Mobile Communication Systems
Autorzy:
Soszka, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2055227.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
5G
6G
channel prediction
channel state information
sub-6 GHz
millimetre-wave
neural network
artificial intelligence
narrowband
wide band
ultra wide band
Opis:
Nowadays, there is a trend to employ adaptive solutions in mobile communication. The adaptive transmission systems seem to answer the need for highly reliable communication that serves high data rates. For efficient adaptive transmission, the future Channel State Information (CSI) has to be known. The various prediction methods can be applied to estimate the future CSI. However, each method has its bottlenecks. The task is even more challenging while considering the future 5G/6G communication where the employment of sub-6 GHz and millimetre waves (mmWaves) in narrow-band, wide-band and ultra-wide-band transmission is considered. Thus, author describes the differences between sub-6 GHz/mmWave and narrow-band/wide-band/ultra-wide-band channel prediction, provide a comprehensive overview of available prediction methods, discuss its performance and analyse the opportunity to use them in sub-6 GHz and mmWave systems. We select Long Short-Term Memory Recurrent Neural Network (RNN) as the most promising technique for future CSI prediction and propose optimising two of its parameters - the number of input features, which was not yet considered as an opportunity to improve the performance of CSI prediction, and the number of hidden layers.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 153--160
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dredging Volumes Prediction for the Access Channel of Santos Port Considering Different Design Depths
Autorzy:
Pion, L.M.
Bernardino, J.C.M
Powiązania:
https://bibliotekanauki.pl/articles/116091.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Port of Santos
dredging
water level
dredging volumes prediction
Chart Datum (CD)
water level modeling
access channel
prediction method
Opis:
Santos is the most important Brazilian port, handling about 114 million of tons in 2016. In 2010, there was a great capital dredging in order to deepen the Access Channel to 15m deep (Chart Datum - CD). This depth was not achieved, due to inefficiency on dredging procedures. As deepening and maintaining design depths are indispensable, this study presents an analysis of sediment deposition in Santos Port Access Channel and an annual dredging volumes prediction, considering current bathymetric survey and design depths of 15, 16 and 17 m (CD).A numerical hydrodynamic and morphological model was developed for the interest area, by using Delft3D®, calibrated with waves, currents and water level data measured within Santos Port adjacen-cies. Sediment transport model was calibrated with suspended sediment data and historic series of dredged volumes from Santos Port Access Channel. Two different scenarios were simulated for each design depth, according to the regional environmental characteristics. For current bathymetric scenario, the model estimates that it would be necessary to dredge an annual average of about 4,325,000 m³ from Santos Port access chan-nel to maintain current depth condition. Regarding design depths of 15, 16, 17 meters, it would be an in-crease of 15%, 55%, and 80%.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 3; 505-514
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies