- Tytuł:
- Convolutional neural networks for P300 signal detection applied to brain computer interface
- Autorzy:
-
Riyad, Mouad
Khalil, Mohammed
Adib, Abdellah - Powiązania:
- https://bibliotekanauki.pl/articles/2141900.pdf
- Data publikacji:
- 2020
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
deep learning
convolutional neural network
brain computer interface
P300
classification - Opis:
- A Brain‐Computer Interface (BCI) is an instrument capa‐ ble of commanding machine with brain signal. The mul‐ tiple types of signals allow designing many applications like the Oddball Paradigms with P300 signal. We propose an EEG classification system applied to BCI using the con‐ volutional neural network (ConvNet) for P300 problem. The system consists of three stages. The first stage is a Spatiotemporal convolutional layer which is a succession of temporal and spatial convolutions. The second stage contains 5 standard convolutional layers. Finally, a lo‐ gistic regression is applied to classify the input EEG sig‐ nal. The model includes Batch Normalization, Dropout, and Pooling. Also, It uses Exponential Linear Unit (ELU) function and L1‐L2 regularization to improve the lear‐ ning. For experiments, we use the database Dataset II of the BCI Competition III. As a result, we get an F1‐score of 53.26% which is higher than the BN3 model.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 4; 58-63
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki