Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "boosted trees" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Zastosowanie metod czarnej skrzynki do prognozowania wartości wybranych wskaźników jakości ścieków dopływających do oczyszczalni komunalnej
Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant
Autorzy:
Szeląg, B.
Bartkiewicz, L.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/236740.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
modelowanie
prognozowanie jakości ścieków metoda MARS
metoda lasów losowych (RF)
metoda samoorganizujących się sieci neuronowych (SOM)
metoda drzew wzmacnianych (BT) metoda analizy składowych
głównych (PCA)
sewage
modeling
sewage quality forecasting
MARS (multivariate adaptive regression spline)
random forest (RF)
self-organizing map (SOM)
boosted trees (BT)
principal component analysis (PCA)
Opis:
Prognozowanie ilości i jakości ścieków dopływających do oczyszczalni komunalnej z odpowiednim wyprzedzeniem czasowym daje możliwość optymalnego sterowania wieloma parametrami procesów oczyszczania ścieków. Dlatego prowadzi się badania mające na celu opracowanie modeli matematycznych (fizykalnych deterministycznych i operatorowych statystycznych), prognozujących zarówno ilość, jak i jakość ścieków dopływających do oczyszczalni. W artykule zbadano możliwość zastosowania prostszych modeli operatorowych do prognozowania wartości wybranych wskaźników jakości ścieków na dopływie do oczyszczalni (BZT5, zawiesiny ogólne, azot ogólny i amonowy, fosfor ogólny) jedynie na podstawie wyników pomiarów natężenia przepływu ścieków oraz – w celu porównania – na podstawie ich zmierzonych wartości. Do tego celu zastosowano metody czarnej skrzynki typu MARS oraz lasy losowe (RF). Dodatkowo przedstawiono możliwość połączenia metody lasów losowych z modelem klasyfikacyjnym (RF+SOM). Do identyfikacji danych określających zmienność wybranych wskaźników jakości ścieków zastosowano metody drzew wzmacnianych (BT) i analizy składowych głównych (PCA). Modele opracowano na podstawie wyników ciągłych pomiarów dobowych przeprowadzonych w latach 2013–2015 w oczyszczalni ścieków komunalnych w Rzeszowie.
Forecasting the amount and quality of wastewater flowing into a treatment plant sufficiently in advance, enables effective control of numerous treatment process parameters. Therefore, mathematical (physical deterministic and time series statistical) models forecasting both the amount and quality of wastewater inflow into a sewage treatment plant are under development. In this paper, a possibility of simpler time series models application to forecasting values of selected indicators (biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonium (NH4+)) of sewage quality in the inflow into a treatment plant was investigated. The research was based solely on sewage flow rate data and – for the purpose of comparison – the actual measured indicator values. For this purpose, MARS type black-box and random forest (RF) methods were used. Also, a possibility of combining the RF method with a classification model (RF+SOM) was investigated. Boosted trees (BT) and principal component analysis (PCA) methods were applied for identification of data that determine variability of the selected sewage quality indicators. The models were developed on the basis of continuous daily measurements performed in the period of 2013–2015 in the municipal sewage treatment plant in Rzeszow.
Źródło:
Ochrona Środowiska; 2016, 38, 4; 39-46
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predictive regression models of monthly seismic energy emissions induced by longwall mining
Regresyjne modele predykcyjne miesięcznej emisji energii sejsmicznej indukowanej eksploatacją w ścianie
Autorzy:
Jakubowski, J.
Tajduś, A.
Powiązania:
https://bibliotekanauki.pl/articles/219968.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sejsmiczność indukowana
wstrząsy górnicze
zagrożenie tąpaniami
eksploatacja ścianowa
drzewa wzmacniane
sieci neuronowe
data mining
modele regresyjne
modele predykcyjne
induced seismicity
mining tremors
rockburst hazard
longwall mining
boosted trees
neural networks
regression models
predictive models
Opis:
This article presents the development and validation of predictive regression models of longwall mining-induced seismicity, based on observations in 63 longwalls, in 12 seams, in the Bielszowice colliery in the Upper Silesian Coal Basin, which took place between 1992 and 2012. A predicted variable is the logarithm of the monthly sum of seismic energy induced in a longwall area. The set of predictors include seven quantitative and qualitative variables describing some mining and geological conditions and earlier seismicity in longwalls. Two machine learning methods have been used to develop the models: boosted regression trees and neural networks. Two types of model validation have been applied: on a random validation sample and on a time-based validation sample. The set of a few selected variables enabled nonlinear regression models to be built which gave relatively small prediction errors, taking the complex and strongly stochastic nature of the phenomenon into account. The article presents both the models of periodic forecasting for the following month as well as long-term forecasting.
W artykule przedstawiono budowę i walidację predykcyjnych modeli regresyjnych sejsmiczności indukowanej eksploatacją w ścianie, opartych na obserwacjach w 63 ścianach kopalni Bielszowice prowadzonych w 12 pokładach w latach 1992-2012. Zmienna prognozowaną jest logarytm miesięcznej sumy energii sejsmicznej wstrząsów w ścianie. Zestaw predyktorów składa się z siedmiu zmiennych ilościowych i jakościowych opisujących wybrane czynniki górnicze i geologiczne w ścianach. Do budowy modeli zastosowano dwie metody uczenia się maszyn: drzewa wzmacniane oraz sieci neuronowe. Zastosowano dwa rodzaje walidacji modeli: na losowej próbie walidacyjnej oraz na czasowej próbie walidacyjnej. Zestaw kilku wybranych zmiennych pozwolił na zbudowanie nieliniowych modeli regresyjnych, które, biorąc pod uwagę złożoną i silnie stochastyczną naturę zjawiska, dają względnie małe błędy pro gnozy. W artykule przedstawiono zarówno modele do prognozy okresowej na kolejny miesiąc jak i do prognozy długoterminowej.
Źródło:
Archives of Mining Sciences; 2014, 59, 3; 705-720
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcyjny model dobowej emisji energii sejsmicznej indukowanej eksploatacją górniczą
Predictive model of the daily release of seismic energy induced by mining
Autorzy:
Jakubowski, J.
Lenart, Ł.
Ożóg, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/166220.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
sejsmiczność indukowana
wstrząsy górnicze
hazard sejsmiczny
zagrożenie tąpaniami
drzewa wzmacniane
sieci neuronowe
regresja logistyczna
modele prognostyczne
modele klasyfikacyjne
induced seismicity
mining tremors
seismic hazard
rockburst hazard
data mining
boosted trees
neural networks
logistic regression
predictive model
classification model
Opis:
W artykule przedstawiono budowę i ocenę predykcyjnego modelu klasyfikacyjnego dobowej emisji energii sejsmicznej indukowanej eksploatacją ścianową węgla. Model jest oparty na danych z katalogu wstrząsów i podstawowych danych o wydobyciu i ścianach eksploatowanych w partii XVI kopalni Piast w okresie od lipca 1987 do marca 2011. Zmienną prognozowaną jest dwustanowa zmienna określająca wystąpienie dobowej sumy energii sejsmicznej wstrząsów w rejonie ściany większej lub równej wartości progowej 10/5 J. Zastosowano trzy metody analityczne w schemacie data mining: regresję logistyczną, sieci neuronowe i drzewa wzmacniane. Jako najlepszy do celów prognozy wybrano model drzew wzmacnianych. Wyniki na zbiorze walidacyjnym pokazały jego dobrą zdolność predykcyjną, co zachęca do dalszych badań.
This paper presents the design and evaluation of the classification predictive model of daily seismic activity induced by longwall mining. The model combines seismic catalog data, output volume and basic characteristics of the longwall faces in sector XVI of the Piast coal mine over the period of July 1987 to March 2011. The predicted variable defines the occurrence of a daily sum of seismic energy released nearby the longwall, that is greater than or equal to the threshold value of 10/5 J. Machine learning and statistical methods were applied, namely neural networks, stochastic gradient boosted trees and logistic regression. The design and evaluation of the classification predictive models were presented. The boosted tree model appeared to meet the prediction quality criteria best. The results of the model evaluation show its promising predictive capability.
Źródło:
Przegląd Górniczy; 2014, 70, 3; 18-25
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie wybranych modeli nieliniowych do prognozy ilości osadu nadmiernego
Application of Selected Nonlinear Methods to Forecast the Amount of Excess Sludge
Autorzy:
Gawdzik, J.
Szeląg, B.
Bezak-Mazur, E.
Stoińska, R.
Powiązania:
https://bibliotekanauki.pl/articles/1818016.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
osady nadmierne
oczyszczanie ścieków
metoda wektorów nośnych
k–najbliższego sąsiada
drzewa wzmacniane
excess sludge
wastewater treatment
support vector machine (SVM)
k–nearest neighbour
boosted trees
Opis:
Operation of a sewage treatment plant is a complex task because it requires maintaining the parameters of its activities at the appropriate level in order to achieve the desired effect of reducing pollution and reduce the flow of sediment discharged from the biological reactor. The basis for predicting the amount of excess sludge and operational parameters WWTP can provide physical models describing the biochemical changes occurring in the reactor, in which the input parameters, ie. Indicators of effluent quality and quantity of wastewater are modeled in advance. However, due to numerous interactions and uncertainty of the data in the physical models and forecast errors parameters of the inlet to the treatment plant Simulation results may be affected by significant errors. Therefore, to minimize the prediction error parameters of operation of the technological objects deliberate use of a black box model. In these models at the stage of learning is generated model structure underlying the projections analyzed the operating parameters of the plant. This publication presents the possibility of the use of methods: support vector, k – nearest neighbour and trees reinforced to predict the amount of the resulting excess sludge during wastewater treatment in the WWTP located in Sitkówka – News with a capacity of 72,000 3/d with a load of 275,000 PE . Due to the fact that did not have the quality parameters of wastewater at the inlet to the activated sludge chambers it was not possible to verify the empirical relationships commonly used in engineering practice to determine the size of the daily flow of excess sludge. Due to the significant differences in the amount of excess sludge generated in the period (t = 1-7 days) the simulation of the amount of sludge into the time were performed. To assessment the compatibility of measurement results and simulations quantities of sludge the mean absolute error and relative error of prediction for the considered parameter of technology was used. The analyzes carried out revealed that the amount of generated excess sludge can be predicted on the basis of parameters describing the quantity and quality of influent waste water (slurry concentration of total nitrogen and total phosphorus, BOD5) and the operating parameters of the biological reactor (recirculation rate, concentration and temperature of the sludge, the dosed amount of methanol and PIX). On the basis of computations, it can be concluded that the most accurate forecasting results amounts of sediment were obtained by using a reinforced trees (t = 2 to 5 days) and Support Vector Machines methods (t = 1, 6, 7 days). While the highest values of forecast errors sediments was obtained using a k – nearest neighbor (t = 2 to 5 days) and reinforced trees (t = 1, 6, 7 days).
Źródło:
Rocznik Ochrona Środowiska; 2016, Tom 18, cz. 2; 695-708
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies