Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "blacha UltraCor" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Budowa obiektu gruntowo-powłokowego z zastosowaniem blachy UltraCor
Construction of the soil-steel structure with use of UltraCor corrugation
Autorzy:
Tomala, P.
Machelski, C.
Powiązania:
https://bibliotekanauki.pl/articles/383615.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
obiekty gruntowo-powłokowe
blacha UltraCor
faza budowy
badanie deformacji
Opis:
W pracy omawiany jest obiekt gruntowo-powłokowy o największej na świecie rozpiętości powłoki - obecnie w końcowej fazie budowy, w Ostródzie. Obiekt zaprojektowano z wykorzystaniem norm amerykańskich i kanadyjskich. Powłokę utworzono z blachy falistej UltraCor bez stosowania nakładek lub żeber usztywniających. Powłoka wyróżnia się mniejszą sztywnością od dotychczas stosowanych blach SuperCor ale z nakładkami i wypełnieniem betonem. Jednak stal z której wykonano blachy jest o wyższej wytrzymałości niż w tych o niższym profilu. Z uwagi na rekordową geometrię powłoki na obiekcie realizuje się kontrolę jej deformacji podczas budowy. Jednym z wykonywanych pomiarów są przemieszczenia służące do określania zmiany promienia krzywizny w kluczu powłoki. Na obiekcie realizuje się również pomiary tensometryczne dające bezpośredni pogląd na zmiany naprężeń w blasze falistej. W pracy zwrócono uwagę na duże zmiany krzywizny podczas budowy i możliwość ich określania na podstawie pomiarów geodezyjnych – powszechnie stosowanych na budowie.
This paper describes soil-steel bridge with the largest span in the world. Structure is located in Ostróda (Poland) and it is currently in a final stage of realization. Structure was designed based on North American and Canadian standards. Steel shell is made from the corrugated structural plates with deepest on the market corrugation 500×237×9,65 mm (UltraCor) without any of reinforcing ribs. Single barrel of UltraCor has less stiffness then previously used SuperCor’s (381×140×7 mm) reinforced by EC Ribs (mirrored plate and encased concrete). Steel used for UltraCor has higher grade than steel used for smaller corrugation. Because of the large span ever used the control of the deformations during construction is carried out. One of the measurements are displacements used to determine the change of the radius of curvature of the shell crown point. Structures is also monitored with strain gauges giving direct view of the changes of stresses in a corrugated steel shell. The summary highlights large changes of radiuses of shell curvature and ability of determine them based on geodetic measurements – commonly used on the sites.
Źródło:
Archiwum Instytutu Inżynierii Lądowej; 2017, 24; 359-368
1897-4007
Pojawia się w:
Archiwum Instytutu Inżynierii Lądowej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zabezpieczenie ogniochronne tuneli drogowych wykonanych z głęboko profilowanych blach korugowanych
Fire protection of road tunnels made of deepcorrugated plates
Autorzy:
Bzdawka, K.
Ćwikliński, J.
Powiązania:
https://bibliotekanauki.pl/articles/383944.pdf
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
pożar
zabezpieczenie ogniowe
tunel
krzywa RWS
blacha falista
SuperCor
UltraCor
MultiPlate
Fendolite
Opis:
Pożary w tunelach drogowych stanowią bardzo duże zagrożenie dla znajdujących się w tunelu ludzi oraz dla samej konstrukcji tunelu. W momencie gdy w tunelu wybucha pożar, zamknięta przestrzeń powoduje bardzo szybki jego rozwój. Wzrost temperatury jest wtedy bardzo gwałtowny, szczególnie gdy mamy do czynienia z pożarem dużych ilości materiałów łatwopalnych – np. w przypadku pożaru cysterny paliwa. Dla takich właśnie warunków opracowano krzywą temperatura-czas najczęściej używaną w Europie przy projektowaniu tuneli – krzywą RWS. W artykule opisano zabezpieczenie na wymagania RWS dla tuneli z głęboko korugowanych blach falistych wykonywanych metodą wykopową. Badanie przeprowadzono dla konstrukcji SuperCor®, której głębokość fali wynosi 140 mm. Z tego powodu wypełnienie całej fali zaprawą ogniochronną pochłonęłoby bardzo dużo materiału i było nieekonomiczne. Zaproponowane rozwiązanie zakłada rozpięcie na górach fali siatki cięto-ciągnionej, na której wykonywany jest natrysk o grubości kilkudziesięciu mm. Skuteczność zabezpieczenia potwierdzono w testach ogniowych. Zabezpieczenie Cafco FENDOLITE® MII grubości 55 mm pozwoliło utrzymać temperaturę stali poniżej 300 °C przez okres 2 godzin i poniżej 450 °C przez okres 4 godzin. Dodatkowe badania mechaniczne potwierdziły, że zabezpieczenie jest odporne na zmęczenie od podciśnienia pochodzącego od przejeżdżających pojazdów i nadaje się do tuneli drogowych i kolejowych – z wyłączeniem KDP.
Fires in road tunnels pose a great threat to the people present and to the structure of the tunnel itself. When a fire breaks out in a tunnel, the confined space of a tunnel leads to very fast development. The temperature increase is very rapid, especially in case of a fire of a tanker full of gasoline. For exactly such case the most used in Europe timetemperature curve was developed – the RWS curve. The article describes a fire protection system for the requirements of RWS fire, dedicated for cut-and-cover tunnels made of deep-profiled steel corrugated plates. The study considered SuperCor® structure, which corrugations are 140 mm deep. Because of that, filling the whole corrugation with thermal insulation would take too much material and be uneconomical. The proposed solution assumes installation of a steel lath on which a tens of millimetres thick fire protection is sprayed-on. The effectiveness of the fire protection has been confirmed by fire tests. 55 mm thick insulation material – Cafco FENDOLITE®MII – was able to keep the steel temperature below 300 °C for 2 hours and below 450 °C for 4 hours. Additional mechanical tests on the proposed fire protection showed that the protection can withstand fatigue from the passing vehicles in road tunnels and in railway tunnels – with the exception of HST.
Źródło:
Archiwum Instytutu Inżynierii Lądowej; 2018, 26; 61-72
1897-4007
Pojawia się w:
Archiwum Instytutu Inżynierii Lądowej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies