Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "biomedical sciences" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Przestrzenne zróżnicowanie rozwoju nanotechnologii w Europie
Spatial diversity of nanotechnology development in Europe
Autorzy:
Dorocki, Sławomir
Kula, Alina
Powiązania:
https://bibliotekanauki.pl/articles/438318.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Tematy:
biomedyczne nauki
Europa
GOW
nanotechnologia
patenty
publikacje
biomedical sciences
Europe
knowledge-based economy
nanotechnology
patents
publications
Opis:
Celem artykułu jest przedstawienie przestrzennego zróżnicowania rozwoju nanotechnologii w Europie. Analizę rozwoju nanotechnologii przeprowadzono na poziomie krajowym, wykorzystując dane obrazujące liczbę patentów nanotechnologicznych, liczbę i strukturę firm nanotechnologicznych, liczbę konferencji o tematyce nanotechnologicznej oraz liczbę publikacji nanotechnologicznych. W artykule oparto się na analizie statystycznej danych liczbowych pozyskanych w wyniku kwerend przeprowadzonych na portalach internetowych: Cientifica Plc, Biotechgate, Nanoforum, Nanowerk, Nanotechnology Now, Web of Science i PubMed oraz danych publikowanych przez OECD i Eurostat. Nanotechnologia zaliczana jest do jednego z głównych działów aktywności sektora nauki, technologii i innowacji i jawi się współcześnie jako technologia przyszłości. Na całym świecie panuje przekonanie o rewolucyjnym potencjale nanotechnologii. W latach 2001–2014 ponad 60 krajów podjęło finansowanie inicjatyw z dziedziny nanotechnologii. Są to zarówno rozwinięte przemysłowo kraje Europy Zachodniej, Japonia, Kanada czy Australia, jak i wschodzące rynki Rosji, Chin, Brazylii i Indii, jak i kraje rozwijające się, np. Nepal i Pakistan. Według liczby zgłoszeń patentowych z nanotechnologii na świecie dominują kraje rozwinięte: USA, Japonia i Niemcy. W latach 90. XX wieku nastąpił wyraźny wzrost liczby patentów nanotechnologicznych. W przestrzeni europejskiej pod względem liczby patentów nanotechnologicznych dominują Niemcy oraz Francja i Wielka Brytania. Jeśli rozpatrujemy liczbę ogółu instytucji nanotechnologicznych, to wyróżniają się w Europie dwa kraje: Niemcy i Wielka Brytania. W Niemczech przeważają instytucje działające w relacji B2B, podczas gdy w Wielkiej Brytanii są to instytucje badawcze non profit. Analizując liczbę patentów i firm nanotechnologicznych oraz liczbę publikacji i konferencji, należy stwierdzić, że rozwój nanotechnologii w Europie jest bardzo zróżnicowany. Sektor ten rozwija się głównie w krajach rozwiniętych gospodarczo. Europejskim liderem nanotechnologicznym są Niemcy. Innymi państwami z wysokim poziomem rozwoju nanotechnologii są: Wielka Brytania, Francja, Szwajcaria, Szwecja, Holandia i Hiszpania. Rozwój nanotechnologii stymulowany jest głównie przez publiczne instytucje badawcze, jednakże komercjalizacja badań następuje dzięki udziałowi firm prywatnych.
The aim of this article is to present the spatial diversity of nanotechnology development in Europe. The analysis of the nanotechnology development was performed on the national level, using data which illustrated the figures about nanotechnology’s patents, amount and structure of nanotechnology businesses and the number of publications about this topic. In this article the statistical analysis was performed using the data from websites: Cientifica Plc, Biotechgate, Nanoforum, Nanowerk, Nanotechnology Now, Web of Science and PubMed, and the data published by OECD and Eurostat. Nanotechnology is included in one of the main areas of the Science, Technology and Innovation Sector’s activity and is seen to be the technology of the future because of its potential. In 2001 – 2014 more than sixty countries started funding nanotechnology projects. These countries include industrially developed countries, like Western Europe countries, Japan, Canada, Australia, and developing countries, like Russia, China, Brasil, India, Nepal, Pakistan. According to the number of patents in this field, industrially developed countries, for example USA, Japan, Germany, are dominating in this area. In the 1990s there was a significant growth in the number of nanotechnology patents. In Europe this area is dominated by Germany, France and United Kingdom. Based on the number of nanotechnology faculties in the country, we must distinguish Germany and United Kingdom. In Germany there are more faculties operating in business to business relation while in United Kingdom there are more non-profit research centers. Based on the number of patents, nanotechnology faculties, publications and conferences it should be noted that nanotechnology development in Europe is diversified. Nanotechnology is more developed in the industrially developed countries, the most prominent country in Europe is Germany, next ones are: United Kingdom, France, Switzerland, Sweden, Netherlands and Spain. Nanotechnology development is stimulated mostly by public research faculties, however the commercialization of this technology is possible because of the private businesses.
Źródło:
Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego; 2015, 29, 1; 27-41
2080-1653
Pojawia się w:
Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Praca badawcza w naukach biomedycznych – wybrane zagadnienia
Research in biomedical sciences – selected problems
Autorzy:
Pawlikowski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1032891.pdf
Data publikacji:
2011
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
praca naukowa
nauki biomedyczne
hipoteza
badania
in vitro
badania na zwierzętach
badania kliniczne
bioetyka
interpretacja
danych
redakcja publikacji
research activity
biomedical sciences
hypothesis
in vitro studies
animal experimentation
clinical studies
bioethics
data interpretation
paper
edition
Opis:
The paper presents the reflections of the author, a scientist with over 50 year scientific activity, concerning the general rules of biomedical research. The author discusses such problems, as the choice of the research topic, selection of the objective and experimental model, methods of the study, interpretation of the data and paper edition. The specific problems (including ethical problems) of the in vitro studies, animal experimentation and clinical studies are also discussed
Praca przedstawia przemyślenia autora, pracownika nauki z ponad 50-letnim stażem, na temat ogólnych zasad pracy badawczej w naukach biomedycznych. Autor omawia takie zagadnienia, jak wybór tematu badań, formułowanie hipotezy roboczej, wybór obiektu (modelu) badawczego i metod badania, interpretacja danych, przygotowanie pracy do publikacji; omawia także specyfikę badań in vitro, badań na zwierzętach i badań klinicznych włącznie ze związaną z nimi problematyką etyczną.
Źródło:
Folia Medica Lodziensia; 2011, 38, 2; 97-115
0071-6731
Pojawia się w:
Folia Medica Lodziensia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Podstawy oceny elektromagnetycznych okoliczności użytkowania nasobnych urządzeń Internetu Rzeczy
Principles of evaluating electromagnetic aspects of using wearable Internet of Things devices
Autorzy:
Zradziński, Patryk
Gryz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/23352060.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pole elektromagnetyczne
skutki bezpośrednie narażenia
skutki pośrednie narażenia
współczynnik pochłaniania właściwego energii (SAR)
nauki o zdrowiu
inżynieria biomedyczna
inżynieria środowiska
electromagnetic field
direct effects of exposure
indirect effects of exposure
specific energy absorption rate (SAR)
health sciences
biomedical engineering
environmental engineering
Opis:
Objęcie poruszających się obiektów nadzorem systemu Internetu Rzeczy (IoT, ang. Internet of Things) wymaga zastosowania bezprzewodowej transmisji danych, a często również energii, z wykorzystaniem propagacji energii elektromagnetycznej w powietrzu. Rozwiązania takie są coraz powszechniej wdrażane w wielu gałęziach gospodarki (np. przemyśle wytwórczym, budownictwie, transporcie czy rolnictwie, nauce, służbie zdrowia, a nawet w służbach mundurowych czy działaniach militarnych). Pole elektromagnetyczne (pole-EM) jest w takich systemach emitowane przez moduły radiowe urządzeń wyposażone w anteny nadawcze. Ze względu na elektromagnetyczne okoliczności związane z użytkowaniem urządzeń nasobnych IoT, właściwe jest rozróżnienie ich pod względem rodzaju źródła zasilania modułów radiowych na: (1) autonomiczne urządzenia wyposażone w źródło zasilania modułów radiowych, wykorzystujących różne standardy radiokomunikacji, np. Bluetooth, Wi-Fi, publiczne systemy telefonii komórkowej i podobne oraz (2) urządzenia niezawierające źródła zasilania, zasilane z zewnątrz energią przekazaną bezprzewodowym łączem elektromagnetycznym, np. znaczniki pasywne RFID. Celem publikacji jest scharakteryzowanie okoliczności i skutków oddziaływania w środowisku pracy pola-EM wytwarzanego ze względu na zamierzone właściwości funkcjonalne różnorodnych nasobnych urządzeń wykorzystywanych w systemach IoT. Scharakteryzowano nasobne urządzenia systemów IoT i wykorzystywane w nich różnorodne technologie radiokomunikacyjne, rozpatrywane ze względu na pole-EM emitowane podczas ich użytkowania i skutki jego oddziaływania w środowisku pracy. Omówiono wymagania prawne dotyczące oceny i ograniczania niepożądanych skutków oddziaływania pola-EM na pracujących i materialne środowisko pracy, a także środki ochronne służące ich ograniczaniu, stosowane w ramach wymagań prawa pracy.
Making movable objects a part of the Internet of Things (IoT) system requires the use of wireless transmission of data, and often also energy when harvesting electromagnetic energy in the air. Such solutions are increasingly commonly implemented in many sectors of the economy (e.g. manufacturing industry, construction, transport and agriculture, science, healthcare, and even in the uniformed services or military operations). The electromagnetic field (EMF) in such systems is emitted by radio modules of devices equipped with transmitting antennas. Due to the electromagnetic circumstances related to the use of IoT wearable devices, it is appropriate to distinguish them in terms of the type of power source for radio modules into: (1) autonomous devices equipped with a power source for radio modules, using various radiocommunication standards, e.g. Bluetooth, Wi-Fi, public mobile telecommunication systems, so on; and (2) devices without a power source, powered externally using energy transmitted via a wireless electromagnetic link, e.g. passive RFID tags. The aim of the publication is to characterise the circumstances and effects of EMF exposure in the work environment due to the intended functional properties of various wearable devices used in IoT systems. The wearable IoT systems devices and the various radiocommunication technologies used in them are characterised, considering the EMF emitted during their use, and the effects of this in the work environment. The paper also discusses the legal requirements for assessing and reducing the undesirable effects of EMF exposure on workers and the material objects of work environment, as well as protective measures to limit them, as applied within the requirements of the labour law.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 4 (114); 7--38
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies