- Tytuł:
-
Prężność par butanolu jako komponentu benzyn silnikowych
Vapour pressure of butanol as a component of gasoline - Autorzy:
- Rogowska, Delfina
- Powiązania:
- https://bibliotekanauki.pl/articles/1834265.pdf
- Data publikacji:
- 2020
- Wydawca:
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy
- Tematy:
-
benzyna E10
biobutanol
liczby blendingowe prężności par
E10 gasoline
biobuthanol
vapour pressure blending numbers - Opis:
- The policy on motor fuels decarbonizastion results in a steady increase in interest in biofuels. Among them, the most popular gasoline components are ethanol and ETBE ether. However, because of advantageous performance properties and new production technologies of biobuthanol, this gasoline component is gaining importance. During gasoline blending, (bio-)buthanol as well as ethanol shows nonlinear effects in case of many parameters, it is that parameter value calculated based on the share and properties of components that is different than that measured in a laboratory. This applies mainly to such parameters as octane numbers, distillation parameters, vapour pressure. It should be noticed that linear programming is used very often for optimization and production planning, which requires a set to be linear. Having the above in mind, blending numbers (additive mixing factors) are calculated for the above parameters, which reflect “behavior” of a given component in specific component set. In this article, the blending number for vapour pressure of n-buthanol and i–buthanol in combination with other oxygen components and gasoline components for gasoline containing above 2.7% (m/m) of oxygen were assessed. The experiment was planned according to modified Andreson’s and McLean’s methodology of planning of experiments. In order to establish the blending numbers, the “regression” statistical data analysis function, which is a component of Excel sheet Analysis ToolPak, was used. In the set of such components as ethanol, ETBE, buthyl alcohols and hydrocarbon components, the vapor pressure blending number of ethanol is much higher than its real vapor pressure value (98.0 kPa vs 16.1 kPa), the ETBE blending value is lower (the blending number is 15.7, the determinate number is 32.0 kPa). In turn, the established vapour pressure blending value of both n-buthanol and i-buthanol is close to the determinate value (the determinate value for n-buthanlo is 1.3 kPa, the blending number is 2.0 kPa, for i-buthanol the determine value is 2.6 kPa, the blending number is 3.0 kPa).
- Źródło:
-
Nafta-Gaz; 2020, 76, 5; 340-348
0867-8871 - Pojawia się w:
- Nafta-Gaz
- Dostawca treści:
- Biblioteka Nauki