Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "binary image transform" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
IMAGE PATTERN ANALYSIS WITH IMAGE POTENTIAL TRANSFORM
Autorzy:
Oleg, Butusov
Dikusar, Vasily
Powiązania:
https://bibliotekanauki.pl/articles/452838.pdf
Data publikacji:
2018
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
binary image transform
distance and potential transform
statistical indices
geometric signatures
pattern analysis
pattern recognition
Opis:
Pattern analysis with image transform based on potential calculation was considered. Initial gray-scale image is sliced into equidistant levels and resulting binary image was prepared by joining of some levels to one binary image. Binary image was transformed under assumption that white pixels in it may be considered as electric charges or spins. Using this assumption Ising model and Coulomb model interaction between white pixels was used for image potential transform. The transform was calculated using moving window. The resulting gray-scale image was again transformed to binary image using the thresholding on 0.5 level. Further binary images were analyzed using statistical indices (average, standard deviation, skewness, kurtosis) and geometric signatures: area, eccentricity, Euler number, orientation and perimeter. It was found that the most suitable geometric signature for pattern configuration analysis of Ising potential transform (IPT) and Coulomb potential transform (CPT) is area value. Similarly the most suitable statistics is distance statistics between white pixels.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2018, 19, 1; 12-27
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Could k-NN classifier be Useful in tree leaves recognition?
Autorzy:
Horaisová, K.
Powiązania:
https://bibliotekanauki.pl/articles/229900.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
binary image
Fourier transform
affine invariance
harmonic analysis
pattern recognition
k-NN classifier
Opis:
This paper presents a method for affine invariant recognition of two-dimensional binary objects based on 2D Fourier power spectrum. Such function is translation invariant and their moments of second order enable construction of affine invariant spectrum except of the rotation effect. Harmonic analysis of samples on circular paths generates Fourier coefficients whose absolute values are affine invariant descriptors. Affine invariancy is approximately saved also for large digital binary images as demonstrated in the experimental part. The proposed method is tested on artificial data set first and consequently on a large set of 2D binary digital images of tree leaves. High dimensionality of feature vectors is reduced via the kernel PCA technique with Gaussian kernel and the k-NN classifier is used for image classification. The results are summarized as k-NN classifier sensitivity after dimensionality reduction. The resulting descriptors after dimensionality reduction are able to distinguish real contours of tree leaves with acceptable classification error. The general methodology is directly applicable to any set of large binary images. All calculations were performed in the MATLAB environment.
Źródło:
Archives of Control Sciences; 2014, 24, 2; 177-192
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
  • odwiedzone
Tytuł:
Robust content-based image retrieval using ICCV, GLCM, and DWT-MSLBP descriptors
Autorzy:
Chavda, Sagar
Goyani, Mahesh
Powiązania:
https://bibliotekanauki.pl/articles/27312841.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
content-based image retrieval
improved color coherence vector
gray-level co-occurrence matrix
discrete wavelet transform
multi-scale local binary pattern
principal component analysis
linear discriminant analysis
Opis:
Content-based image retrieval (CBIR) retrieves visually similar images from a dataset based on a specified query. A CBIR system measures the similarities between a query and the image contents in a dataset and ranks the dataset images. This work presents a novel framework for retrieving similar images based on color and texture features. We have computed color features with an improved color coherence vector (ICCV) and texture features with a gray-level co-occurrence matrix (GLCM) along with DWT-MSLBP (which is derived from applying a modified multi-scale local binary pattern [MS-LBP] over a discrete wavelet transform [DWT], resulting in powerful textural features). The optimal features are computed with the help of principal component analysis (PCA) and linear discriminant analysis (LDA). The proposed work uses a variancebased approach for choosing the number of principal components/eigenvectors in PCA. PCA with a 99.99% variance preserves healthy features, and LDA selects robust ones from the set of features. The proposed method was tested on four benchmark datasets with Euclidean and city-block distances. The proposed method outshines all of the identified state-of-the-art literature methods.
Źródło:
Computer Science; 2022, 23 (1); 5--36
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies