- Tytuł:
- A Constructive Extension of the Characterization on Potentially Ks,t-Bigraphic Pairs
- Autorzy:
-
Guo, Ji-Yun
Yin, Jian-Hua - Powiązania:
- https://bibliotekanauki.pl/articles/31342128.pdf
- Data publikacji:
- 2017-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
degree sequence
bigraphic pair
potentially K s,t -bigraphic pair - Opis:
- Let Ks,t be the complete bipartite graph with partite sets of size s and t. Let L1 = ([a1, b1], . . ., [am, bm]) and L2 = ([c1, d1], . . ., [cn, dn]) be two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ . . . ≥ am and c1 ≥ c2 ≥ . . . ≥ cn. We say that L = (L1; L2) is potentially Ks,t (resp. As,t)-bigraphic if there is a simple bipartite graph G with partite sets X = {x1, . . ., xm} and Y = {y1, . . ., yn} such that ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n and G contains Ks,t as a subgraph (resp. the induced subgraph of {x1, . . ., xs, y1, . . ., yt} in G is a Ks,t). In this paper, we give a characterization of L that is potentially As,t-bigraphic. As a corollary, we also obtain a characterization of L that is potentially Ks,t-bigraphic if b1 ≥ b2 ≥ . . . ≥ bm and d1 ≥ d2 ≥ . . . ≥ dn. This is a constructive extension of the characterization on potentially Ks,t-bigraphic pairs due to Yin and Huang (Discrete Math. 312 (2012) 1241–1243).
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 251-259
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki