Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bifurcation point" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Some theorems of Rabinowitz type for nonlinearizable eigenvalue problems
Autorzy:
Przybycin, J.
Powiązania:
https://bibliotekanauki.pl/articles/2049049.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nonlinear eigenvalue problem
bifurcation point
bifurcation interval
Opis:
We discuss the structure of the solution set for nonlinearizable eigenvalue problems in a Hilbert space.
Źródło:
Opuscula Mathematica; 2004, 24, 1; 115-121
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical detection of bifurcation point in the curve
Autorzy:
Gulgowski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/748467.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
path following algorithm
bifurcation point
bifurcation simplex
Opis:
We are presenting a numerical method which detects the presence and position of a  bifurcation simplex, the regular $(k+1)$-dimensional simplex, which may be considered as "fat bifurcation point", in the curve of zeroes of the $C^1$ map $f:{\mathbb R}^{k+1}\to{\mathbb R}^k$. On the other hand the bifurcation simplex appears in the neighbourhood of the bifurcation point, meaning that we have the method to locate the bifurcation point as well. The method does not require any estimation of the derivative of the function $f$ and refers to the values of the map $f$ only in the vertices of certain triangulation. The bifurcation simplex is detected by change of the Brouwer degree value of the restriction of the map $f$ to the appropriate $k$-simplex.This publication is co-financed by the European Union as part of the European Social Fund within the project Center for Applications of Mathematics.
Źródło:
Mathematica Applicanda; 2015, 43, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear eigenvalue problems for fourth order ordinary differential equations
Autorzy:
Przybycin, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/1311640.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
bifurcation point
bifurcation interval
Leray-Schauder degree
characteristic value
Opis:
This paper was inspired by the works of Chiappinelli ([3]) and Schmitt and Smith ([7]). We study the problem ℒu = λau + f(·,u,u',u'',u''') with separated boundary conditions on [0,π], where ℒ is a composition of two operators of Sturm-Liouville type. We assume that the nonlinear perturbation f satisfies the inequality |f(x,u,u',u'',u''')| ≤ M|u|. Because of the presence of f the considered equation does not in general have a linearization about 0. For this reason the global bifurcation theorem of Rabinowitz ([5], [6]) is not applicable here. We use the properties of Leray-Schauder degree to establish the existence of nontrivial solutions and describe their location. The results obtained are similar to those proved by Chiappinelli for Sturm-Liouville operators.
Źródło:
Annales Polonici Mathematici; 1994-1995, 60, 3; 249-253
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Behaviour of Solutions to Marchuks Model Depending on a Time Delay
Autorzy:
Bodnar, M.
Foryś, U.
Powiązania:
https://bibliotekanauki.pl/articles/929743.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
antygen
przeciwciało
opóźnienie różniczkowe
antigen
antibody
plasma cell
organ-target
delay differential equation
stationary state
stability
bifurcation point
Opis:
Marchuk's model of an immune reaction is a system of differential equations with a time delay. The aim of this paper is to study the behaviour of solutions to Marchuk's model depending upon the delay of immune reaction and the history of an illness. We study Marchuk's model without delays, with aconstant delay and with an infinite delay. A continuous dependence on thedelay is considered. Bifurcation points are found using computer simulations.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 1; 97-112
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of main geometric characteristics of deformed sphere and standard spheroid
Autorzy:
Kovalchuk, Vasyl
Mladenov, Ivaïlo M.
Powiązania:
https://bibliotekanauki.pl/articles/27311436.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
deformed sphere
standard spheroid
sphericity index
elliptic integrals
elliptic functions
tipping point
bifurcation point
sfera zdeformowana
sferoida standardowa
współczynnik sferyczności
punkt zwrotny
punkt bifurkacji
całka eliptyczna
funkcja eliptyczna
Opis:
In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 5; art. no. e147058
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study of chaos for processes under small perturbations II : rigorous proof of chaos
Autorzy:
Oprocha, P.
Wilczyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/255940.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
distributional chaos
isolating segments
fixed point index
bifurcation
Opis:
In the present paper we prove distributional chaos for the Poincaré map in the perturbed equation [formula]. Heteroclinic and homoclinic connections between two periodic solutions bifurcating from the stationary solution 0 present in the system when N = 0 are also discussed.
Źródło:
Opuscula Mathematica; 2010, 30, 1; 5-36
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bifurcation in a nonlinear steady state system
Autorzy:
Wang, G. Q.
Cheng, S. S.
Powiązania:
https://bibliotekanauki.pl/articles/255541.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
bifurcation
cellular neural network
steady state
Krasnoselsky fixed point theorem
Opis:
The steady state solutions of a nonlinear digital cellular neural network with ω neural units and a nonnegative variable parameter λ are sought. We show that λ = 1 is a critical value such that the qualitative behavior of our network changes. More specifically, when ω is odd, then for λ ∈ [0, 1), there is one positive and one negative steady state, and for λ ∈ [1, ∞), steady states cannot exist; while when ω is even, then for λ ∈ [0, 1), there is one positive and one negative steady state, and for λ = 1, there are no nontrivial steady states, and for λ ∈ (1, ∞), there are two fully oscillatory steady states. Furthermore, the number of existing nontrivial solutions cannot be improved. It is hoped that our results are of interest to digital neural network designers.
Źródło:
Opuscula Mathematica; 2010, 30, 3; 349-360
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Mechanism of Transformation of Global Business Cycles into Dynamics of Regional Real Estate Markets
Autorzy:
Jakimowicz, A.
Kulesza, S.
Powiązania:
https://bibliotekanauki.pl/articles/1029167.pdf
Data publikacji:
2018-06
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
housing price dynamics
structural transition
cusp catastrophe
critical point
bifurcation set
equilibrium surface
Opis:
The aim of this article is the identification of the occurrence mechanism of sudden quantitative changes in real-estate market prices, which were observed during the global financial crisis. Since such phenomena did not occur to such an intensity during previous crises, it can be assumed that a new economic dynamic type has emerged in real-estate markets. The most promising of the methods of studying such phenomena seems to be the bifurcation method and particularly the catastrophe theory. This study analyzes changes in the prices of residential property based on cusp catastrophes. Empirical data were fit to a stochastic cusp model to visualize the evolutionary path of real estate market. Two other popular models (linear and logistic) were also estimated to compare results. A comparative analysis proved that the cusp model can best explain structural price instabilities in real-estate markets. The results confirmed that the evolution of the real estate market combines two processes: long-term evolution in the area of non-degenerate stability and discontinuous changes in the area of degenerate stability. Structural changes take place in the system only in the area of degenerate stability. The theoretical and practical results show that the catastrophe theory may have predictive potential, which could support traditional methods of predicting changes on real estate markets.
Źródło:
Acta Physica Polonica A; 2018, 133, 6; 1351-1361
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies