Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "belief networks" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Speech-Based Vehicle Movement Control Solution
Autorzy:
Kaur, Gurpreet
Srivastava, Mohit
Kumar, Amod
Powiązania:
https://bibliotekanauki.pl/articles/1839320.pdf
Data publikacji:
2020
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
deep belief networks
mel frequency cepstral coeficients
speech recognition
Opis:
The article describes a speech-based robotic prototype designed to aid the movement of elderly or handicapped individuals. Mel frequency cepstral coefficients (MFCC) are used for the extraction of speech features and a deep belief network (DBN) is trained for the recognition of commands. The prototype was tested in a real-world environment and achieved an accuracy rate of 87.4%.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 3; 72-77
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep Belief Neural Networks and Bidirectional Long-Short Term Memory Hybrid for Speech Recognition
Autorzy:
Brocki, Ł.
Marasek, K.
Powiązania:
https://bibliotekanauki.pl/articles/177625.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep belief neural networks
long-short term memory
bidirectional recurrent neural networks
speech recognition
large vocabulary continuous speech recognition
Opis:
This paper describes a Deep Belief Neural Network (DBNN) and Bidirectional Long-Short Term Memory (LSTM) hybrid used as an acoustic model for Speech Recognition. It was demonstrated by many independent researchers that DBNNs exhibit superior performance to other known machine learning frameworks in terms of speech recognition accuracy. Their superiority comes from the fact that these are deep learning networks. However, a trained DBNN is simply a feed-forward network with no internal memory, unlike Recurrent Neural Networks (RNNs) which are Turing complete and do posses internal memory, thus allowing them to make use of longer context. In this paper, an experiment is performed to make a hybrid of a DBNN with an advanced bidirectional RNN used to process its output. Results show that the use of the new DBNN-BLSTM hybrid as the acoustic model for the Large Vocabulary Continuous Speech Recognition (LVCSR) increases word recognition accuracy. However, the new model has many parameters and in some cases it may suffer performance issues in real-time applications.
Źródło:
Archives of Acoustics; 2015, 40, 2; 191-195
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Sparse Initialization in Deep Belief Networks
Autorzy:
Grzegorczyk, K.
Kurdziel, M.
Wójcik, P. I.
Powiązania:
https://bibliotekanauki.pl/articles/305264.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sparse initialization
Deep Belief Networks
Noisy Rectified Linear Units
Opis:
Deep neural networks are often trained in two phases: first, hidden layers are pretrained in an unsupervised manner, and then the network is fine-tuned with error backpropagation. Pretraining is often carried out using Deep Belief Networks (DBNs), with initial weights set to small random values. However, recent results established that well-designed initialization schemes, e.g., Sparse Initialization (SI), can greatly improve the performance of networks that do not use pretraining. An interesting question arising from these results is whether such initialization techniques wouldn’t also improve pretrained networks. To shed light on this question, in this work we evaluate SI in DBNs that are used to pretrain discriminative networks. The motivation behind this research is our observation that SI has an impact on the features learned by a DBN during pretraining. Our results demonstrate that this improves network performance: when pretraining starts from sparsely initialized weight matrices, networks achieve lower classification errors after fine-tuning.
Źródło:
Computer Science; 2015, 16 (4); 313-327
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks
Autorzy:
Chu, J. L.
Krzyżak, A.
Powiązania:
https://bibliotekanauki.pl/articles/91650.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural networks
belief networks
convolutional neural networks
artificial neural networks
Deep Belief Network
generative model
Opis:
Biologically inspired artificial neural networks have been widely used for machine learning tasks such as object recognition. Deep architectures, such as the Convolutional Neural Network, and the Deep Belief Network have recently been implemented successfully for object recognition tasks. We conduct experiments to test the hypothesis that certain primarily generative models such as the Deep Belief Network should perform better on the occluded object recognition task than purely discriminative models such as Convolutional Neural Networks and Support Vector Machines. When the generative models are run in a partially discriminative manner, the data does not support the hypothesis. It is also found that the implementation of Gaussian visible units in a Deep Belief Network trained on occluded image data allows it to also learn to effectively classify non-occluded images.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 5-19
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concept of Usage of Bayesian Networks in Clinical Decision Support Module
Koncepcja wykorzystania sieci bayesowskich w module wspomagania decyzji medycznych
Autorzy:
Strawa, M.
Powiązania:
https://bibliotekanauki.pl/articles/305953.pdf
Data publikacji:
2012
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci bayesowskie
sieci przekonań
system wspomagania decyzji medycznych
Bayesian networks
belief networks
clinical decision support system
Opis:
Concept of decision support module utilizing a repository of clinical pathways has been presented in this paper: the definition of Bayesian networks and its major concepts, description of chosen inference algorithm and an example of diagnosis.
W artykule przedstawiono koncepcję budowy modułu wspomagania decyzji medycznych, współpracującego z repozytorium ścieżek klinicznych. Składają się na nią: definicja sieci bayesowskich oraz najważniejszych pojęć z nimi związanych, opis wybranego mechanizmu wnioskowania oraz przykład generowania diagnozy w module.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2012, 9; 27-34
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele odwrotne i modelowanie diagnostyczne
Inverse models and diagnostic modeling
Autorzy:
Cholewa, W.
Powiązania:
https://bibliotekanauki.pl/articles/328712.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
modele odwrotne
modele diagnostyczne
sieci przekonań
inverse models
diagnostic models
belief networks
Opis:
Praca dotyczy ogólnej metodologii badań diagnostycznych, Wskazano podejścia bazujące na biernych i czynnych eksperymentach diagnostycznych. Zaproponowano podejście mieszane, w którym stosowane są modele odwrotne współdziałające ze szczególnymi układami wnioskującymi wykonanymi z zastosowaniem sieci przekonań. Opracowanie zawiera ogólne wprowadzenie do modeli odwrotnych oraz do sieci przekonań.
The paper deals with a general methodology for diagnostic investigations. It presents basic approaches connected with passive as well as active diagnostic experiments. It suggests a mixed approach making use of inverse models followed by a particular diagnostic reasoning done by means of belief networks. The paper contains a basic introduction to the inverse models and to belief networks.
Źródło:
Diagnostyka; 2004, 30, T. 1; 111-114
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The role of time in influence diagrams
Autorzy:
Traczyk, W.
Powiązania:
https://bibliotekanauki.pl/articles/307809.pdf
Data publikacji:
2003
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
niepewność
uncertainty
belief networks
influence diagrams
ordering in time
Opis:
An influence diagram is a compact representation emphasizing the qualitative features of decision problem under uncertainty. Classical influence diagram has parameters stable in time, determined order of suggested decisions and generally is independent of time. Here we have shown some possible methods of construction of time dependent influence diagrams: with decision ordering, time-sliced segments and time consuming nodes. Such gathering of methods can help in selection of a proper solution.
Źródło:
Journal of Telecommunications and Information Technology; 2003, 3; 108-111
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies