Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bayes network" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Platforma do budowania sieci stwierdzeń
Environment for statement network design
Autorzy:
Cholewa, W.
Chrzanowski, P.
Rogala, T.
Amarowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/152694.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieć stwierdzeń
wielowarstwowa sieć stwierdzeń
sieć Bayesa
model diagnostyczny
statement network
multilayer statement network
Bayes network
diagnostics model
Opis:
W niniejszym artykule przedstawiono wyniki badań związanych z zastosowaniem metod i technik sztucznej inteligencji w obszarze diagnostyki technicznej. Szczególną uwagę zwrócono na możliwość budowania systemów doradczych opartych na wielowarstwowych sieciach stwierdzeń. Przedstawiono ogólną koncepcję platformy do budowania sieci stwierdzeń. Nakreślono plan prac związanych z rozwojem platformy, który umożliwi stosowanie różnego typu sieci w ramach jednego modelu oraz integrację z innymi systemami.
This paper deals with the results of studies relevant to the methods and techniques of artificial intelligence in the field of technical diagnostics. At the beginning, the basic concepts, such as the statement and statement network, are described. Then, the concept of a multilayer statement network (Fig. 1) which is generalization of a single-layer statement network is presented. Special attention is paid to possibility of using the multilayer statement networks for development of multi-scale statement networks. Next, the general concept of a platform for development of the multilayer statement network and description of the main classes of objects resulting from using the platform are given. The choice of R environment for development of the platform is justified and its advantages are emphasized. The data exchange with other systems using XML format and the file structure is described. The process of construction of the multilayer statement network is discussed based on an example of the two-layer network shown in Fig. 2. The obtained results show the correctness of the platform operation. Finally, the main advantages of platforms, such as possibility of development of multilayer statement networks or commenting of the particular objects are discussed. The schedule of the development of platforms, including e.g. extension of the learning process of the network structure and tuning the network parameters basing on the available data sets or extension-training opportunities to construct multilayer network models with different types of networks on a different layers is also presented.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 9, 9; 1079-1082
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methods for identifying threats of critical infrastructure systems within Baltic Sea region
Autorzy:
Tchórzewska-Cieślak, Barbara
Pietrucha-Urbanik, Katarzyna
Szpak, Dawid
Powiązania:
https://bibliotekanauki.pl/articles/2068699.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
failure
system safety
safety management
risk
security
threats
FMEA
safety
failure analysis
Bayes network
Opis:
In the analysis of the operation of critical infrastructure systems it is important to perform the analysis of the safety of the operation. The daily operation of such systems is inherently associated with the occurrence of various types of random undesirable events. Therefore, in the paper the matrix and logical trees methods used in the analysis of the risk of threats in critical infrastructure systems within the Baltic Sea, were presented. The analysis and assessment of the protection of technical system was performed using the FMEA method (Failure Mode and Effect Analysis). As to analyse the cause and effect of undesirable events the method of Bayes' theorem and Java Bayes program were implemented, which allows to identify the probability of the event occurrence.
Źródło:
Journal of Polish Safety and Reliability Association; 2019, 10, 1; 149--166
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of cause-effect dependence model of undesirable events using Bayes network
Autorzy:
Tchórzewska-Cieślak, B.
Pietrucha-Urbanik, K.
Szpak, D.
Powiązania:
https://bibliotekanauki.pl/articles/2068874.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
bayes network
risk
security
Opis:
In the paper the method of cause and effect analysis of undesirable events using the Bayesian networks is presented. For the analysis, due to the complexity of the calculations, it is proposed to use Java Bayes program as a free and simple tool to support Bayesian analysis. Bayesian estimation allows to identify the probability of the event occurrence. For this reason its use was proposed to determine the safety probability. Using Bayes' theorem is also possible to modify initial judgement about the situation with the use of a priori probability so that a new situation described by a posteriori probability arises. In this sense, by Bayes' theorem the data can be sequentially processed, including considerations for newer information, and thereby create a more reliable basis for decision making for the system operator. In the paper, the methodology was presented, which can be extended in order to improve the detection and monitoring of undesirable events in infrastructure.
Źródło:
Journal of Polish Safety and Reliability Association; 2017, 8, 1; 149--156
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computerised Recommendations On E-Transaction Finalisation By Means Of Machine Learning
Autorzy:
Budnikas, Germanas
Powiązania:
https://bibliotekanauki.pl/articles/466046.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
online behaviour
Google Analytics
Naïve Bayes classifier
artificial neural network
Opis:
Nowadays a vast majority of businesses are supported or executed online. Website-to-user interaction is extremely important and user browsing activity on a website is becoming important to analyse. This paper is devoted to the research on user online behaviour and making computerised advices. Several problems and their solutions are discussed: to know user behaviour online pattern with respect to business objectives and estimate a possible highest impact on user online activity. The approach suggested in the paper uses the following techniques: Business Process Modelling for formalisation of user online activity; Google Analytics tracking code function for gathering statistical data about user online activities; Naïve Bayes classifier and a feedforward neural network for a classification of online patterns of user behaviour as well as for an estimation of a website component that has the highest impact on a fulfilment of business objective by a user and which will be advised to be looked at. The technique is illustrated by an example.
Źródło:
Statistics in Transition new series; 2015, 16, 2; 309-322
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparative study on performance of basic and ensemble classifiers with various datasets
Autorzy:
Gunakala, Archana
Shahid, Afzal Hussain
Powiązania:
https://bibliotekanauki.pl/articles/30148255.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
classification
Naïve Bayes
neural network
Support Vector Machine
Decision Tree
ensemble learning
Random Forest
Opis:
Classification plays a critical role in machine learning (ML) systems for processing images, text and high -dimensional data. Predicting class labels from training data is the primary goal of classification. An optimal model for a particular classification problem is chosen based on the model's performance and execution time. This paper compares and analyzes the performance of basic as well as ensemble classifiers utilizing 10-fold cross validation and also discusses their essential concepts, advantages, and disadvantages. In this study five basic classifiers namely Naïve Bayes (NB), Multi-layer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) and the ensemble of all the five classifiers along with few more combinations are compared with five University of California Irvine (UCI) ML Repository datasets and a Diabetes Health Indicators dataset from Kaggle repository. To analyze and compare the performance of classifiers, evaluation metrics like Accuracy, Recall, Precision, Area Under Curve (AUC) and F-Score are used. Experimental results showed that SVM performs best on two out of the six datasets (Diabetes Health Indicators and waveform), RF performs best for Arrhythmia, Sonar, Tic-tac-toe datasets, and the best ensemble combination is found to be DT+SVM+RF on Ionosphere dataset having respective accuracies 72.58%, 90.38%, 81.63%, 73.59%, 94.78% and 94.01%. The proposed ensemble combinations outperformed the conven¬tional models for few datasets.
Źródło:
Applied Computer Science; 2023, 19, 1; 107-132
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies