Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bacterial recognition" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose
Autorzy:
Sarabia-Sainz, Andre-i
Ramos-Clamont, Gabriela
Winzerling, Joy
Vázquez-Moreno, Luz
Powiązania:
https://bibliotekanauki.pl/articles/1039957.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
neoglycans
bacterial recognition
E. coli K88 adhesion
glycation of serum albumin
Opis:
Recently, glyco-therapy is proposed to prevent the interaction of bacterial lectins with host ligands (glycoconjugates). This interaction represents the first step in infection. Neoglycans referred to as PSA-Lac (PSA-Glu (β1-4) Gal) were obtained by conjugation of porcine serum albumin (PSA) with lactose at 80 °C, 100 °C and 120 ºC. Characterization studies of the products showed that PSA could contain 1, 38 or 41 added lactoses, depending on the reaction temperature. These neoglycans were approximately 10 times more glycated than PSA-Lac obtained in previous work. Lactose conjugation occurred only at lysines and PSA-Lac contained terminal galactoses as confirmed by Ricinus communis lectin recognition. Furthermore, Escherichia coli K88+, K88ab, K88ac and K88ad adhesins showed affinity toward all PSA-Lac neoglycans, and the most effective was the PSA-Lac obtained after 100 ºC treatment. In vitro, this neoglycan partially inhibited the adhesion of E. coli K88+ to piglet mucin (its natural ligand). These results provide support for the hypothesis that glycated proteins can be used as an alternative for bioactive compounds for disease prevention.
Źródło:
Acta Biochimica Polonica; 2011, 58, 1; 95-100
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methods of Classification of the Genera and Species of Bacteria Using Decision Tree
Autorzy:
Plichta, Anna
Powiązania:
https://bibliotekanauki.pl/articles/308707.pdf
Data publikacji:
2019
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
bacterial genera and species
decision tree
pattern recognition
Opis:
This paper presents a computer-based method for recognizing digital images of bacterial cells. It covers automatic recognition of twenty genera and species of bacteria chosen by the author whose original contribution to the work consisted in the decision to conduct the process of recognizing bacteria using the simultaneous analysis of the following physical features of bacterial cells: color, size, shape, number of clusters, cluster shape, as well as density and distribution of the cells. The proposed method may be also used to recognize the microorganisms other than bacteria. In addition, it does not require the use of any specialized equipment. The lack of demand for high infrastructural standards and complementarity with the hardware and software widens the scope of the method’s application in diagnostics, including microbiological diagnostics. The proposed method may be used to identify new genera and species of bacteria, but also other microorganisms that exhibit similar morphological characteristics.
Źródło:
Journal of Telecommunications and Information Technology; 2019, 4; 74-82
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of species and genera of bacteria by means of the product of weights of the classifiers
Autorzy:
Plichta, Anna
Powiązania:
https://bibliotekanauki.pl/articles/329978.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
pattern recognition
bacterial cells
product of weights of the classifiers
rozpoznanie obrazowe
komórki bakteryjne
iloczyn masy klasyfikatorów
Opis:
In microbiology, computer methods are applied in the analysis and recognition of laboratory-acquired microscopic images concerning, for example, bacterial cells or other microorganisms. Proper recognition of the species and genera of bacteria is a key stage in the microbiological diagnostics process, because it allows a quick start of the appropriate therapy. The original method proposed in the paper concerns the automatic recognition of selected species and genera of bacteria presented in digital images. The classification was made on the basis of the analysis of the physical characteristics of bacterial cells using the product of classifier confidence weights. The end result of the classification process is the classification list, sorted in descending order according to the weights of the classifiers. In addition to the correct classification, a list of other possible results of the analysis is obtained. The method thus allows not only the classification, but also an analysis of the confidence level of the selection made. The proposed method can be used to recognize not only bacterial cells, but also other microorganisms, for example, fungi that exhibit similar morphological characteristics. In addition, the use of the method does not require the application of specialized computer equipment, which widens the scope of applications regardless of the laboratory IT infrastructure, not only in microbiological diagnostics, but also in other diagnostic laboratories.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 463-473
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new division of bacterial UvrA homologues
Autorzy:
Marszalkowska, M.
Bil, M.
Kreft, L.
Olszewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/81007.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
UvrA protein
DNA binding
damage-recognition enzyme
nucleotide excision repair system
bacterial genome
prokaryotic organism
Pseudomonas putida
Xanthomonas axonopodis
Deinococcus radiodurans
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 1
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies