Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "azo dye wastewater treatment" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Azo dye wastewater treatment in a novel process of biofilm coupled with electrolysis
Autorzy:
Zou, Haiming
Chu, Lin
Wang, Yang
Powiązania:
https://bibliotekanauki.pl/articles/204706.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
azo dye wastewater treatment
color removal
biofilm
electrolysis
bioelectrochemical system
Opis:
Azo dye wastewater treatment is urgent necessary nowadays. Electrochemical technologies commonly enable more efficient degradation of recalcitrant organic contaminants than biological methods, but those rely greatly on the energy consumption. A novel process of biofilm coupled with electrolysis, i.e., bioelectrochemical system (BES), for methyl orange (MO) dye wastewater treatment was proposed and optimization of main influence factors was performed in this study. The results showed that BES had a positive effect on enhancement of color removal of MO wastewater and 81.9% of color removal efficiency was achieved at the optimum process parameters: applied voltage of 2.0 V, initial MO concentration of 20 mg/L, glucose loads of 0.5 g/L and pH of 8.0 when the hydraulic retention time (HRT) was maintained at 3 d, displaying an excellent color removal performance. Importantly, a wide range of effective pH, ranging from 6 to 9, was found, thus greatly favoring the practical application of BES described here. The absence of a peak at 463 nm showed that the azo bond of MO was almost completely cleaved after degradation in BES. From these results, the proposed method of biodegradation combined with electrochemical technique can be an effective technology for dye wastewater treatment and may hopefully be also applied for treatment of other recalcitrant compounds in water and wastewater
Źródło:
Archives of Environmental Protection; 2019, 45, 3; 38-43
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Textile Wastewater Treated by Constructed Wetlands – A Critical Review
Autorzy:
Hussein, Amjad
Powiązania:
https://bibliotekanauki.pl/articles/24201781.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
azo dye
constructed wetland
textile wastewater
treatment
Opis:
Textile industries are among the most environmentally unsustainable businesses, releasing large amounts of effluent that endangers ecosystem health. Constructed wetlands (CWs) are low-cost eco-technical treatments for industrial wastewater control. The CWs are self-contained remediation systems that do not require external energy and have basic mechanisms for pollutant removal, such as biological, chemical, and physical processes. For more than sixty years, constructed wetlands have been utilized to clean wastewater. Most applications have been developed to treat municipal or household wastewater, although CWs are now successfully used to treat a wide range of wastewater types. Constructed wetlands were also employed to treat textile industry effluents in the 1990s. The survey indicated that textile manufacturing wastewaters were treated using subsurface and surface-flow wetlands. Both horizontal and vertical flow systems have been designed within subsurface flow-created wetlands. In addition, many hybrid-built wetlands have recently been documented in the literature for textile industrial wastewater treatment. According to the survey, textile industrial wastewater is treated in constructed wetlands on all continents, and this research includes the data from 65 constructed wetlands in 21 nations worldwide. This paper examined the latest improvements and discoveries in CWs and the many types of CWs used for textile wastewater treatment. The paper also demonstrated state-of-the-art integrated technologies for improving the performance and sustainability of CWs, such as CW-MFC systems.
Źródło:
Journal of Ecological Engineering; 2023, 24, 5; 256--275
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies