Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "aspect extraction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Novel framework for aspect knowledge base generated automatically from social media using pattern rules
Autorzy:
Tran, Tuan Anh
Duangsuwan, Jarunee
Wettayaprasit, Wiphada
Powiązania:
https://bibliotekanauki.pl/articles/2097963.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
opinion mining
aspect knowledge base
aspect extraction
pattern rules
social media
Opis:
One of the factors that improve businesses in business intelligence is summarization systems that can generate summaries based on sentiment from social media. However, these systems cannot produce such summaries automatically; they use annotated datasets. To support these systems with annotated datasets, we propose a novel framework that uses pattern rules. The framework has two procedures: 1) pre-processing, and 2) aspect knowledge-base generation. The first procedure is to check and correct any misspelled words (bigram and unigram) by a proposed method and tag the parts-of-speech of all of the words. The second procedure is to automatically generate an aspect knowledge base that is to be used to produce sentiment summaries by sentiment-summarization systems. Pattern rules and semantic similarity-based pruning are used to automatically generate an aspect knowledge base from social media. In the experiments, eight domains from benchmark datasets of reviews are used. The performance evaluation of our proposed approach shows the highest performance when compared to other unsupervised approaches.
Źródło:
Computer Science; 2021, 22 (4); 489--516
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Full-fledged temporal processing : bridging the gap between deep linguistic processing and temporal extraction
Autorzy:
Costa, F.
Branco, A.
Powiązania:
https://bibliotekanauki.pl/articles/103861.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
temporal processing
temporal extraction
tense
aspect
hybrid approaches
deep linguistic processing
shallow linguistic processing
Opis:
The full-fledged processing of temporal information presents specific challenges. These difficulties largely stem from the fact that the temporal meaning conveyed by grammatical means interacts with many extra-linguistic factors (world knowledge, causality, calendar systems, reasoning). This article proposes a novel approach to this problem, based on a hybrid strategy that explores the complementarity of the symbolic and probabilistic methods. A specialized temporal extraction system is combined with a deep linguistic processing grammar. The temporal extraction system extracts eventualities, times and dates mentioned in text, and also temporal relations between them, in line with the tasks of the recent TempEval challenges; and uses machine learning techniques to draw from different sources of information (grammatical and extra-grammatical) even if it is not explicitly known how these combine to produce the final temporal meaning being expressed. In turn, the deep computational grammar delivers richer truth-conditional meaning representations of input sentences, which include a principled representation of temporal information, on which higher level tasks, including reasoning, can be based. These deep semantic representations are extended and improved according to the output of the aforementioned temporal extraction module. The prototype implemented shows performance results that increase the quality of the temporal meaning representations and are better than the performance of each of the two components in isolation.
Źródło:
Journal of Language Modelling; 2013, 1, 1; 97-154
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies