Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artefacts detection" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Crowdsourced Driving Comfort Monitoring
Autorzy:
Badurowicz, Marcin
Montusiewicz, Jerzy
Przyłucki, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2023307.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
accelerometer
anomaly detection
roads quality
road artefacts
quality monitoring
Opis:
In this paper, the authors are showing a calculation of the road quality index called Simple Road Quality Index (SRQI) using the weight provided by the amateur drivers to best possibly rate their comfort on driving on that road. The index is calculated from acceleration data acquired by the smartphone application and is aggregated in a crowdsourcing system for the classification of road quality using the fuzzy membership function. The paper shows that the proposed index correctly shows road quality changes over time and may be used as a way to mark roads to be avoided or needs to be repaired. The numerical experiment was based on the same street in Lublin, Poland, in 2015-2021 and is correctly showing that the quality of analyzed roads deteriorated over time, especially in the winter season.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 3; 309-317
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single-ended quality measurement of a music content via convolutional recurrent neural networks
Autorzy:
Organiściak, Kamila
Borkowski, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1849158.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
audio data analysis
artefacts detection
convolutional neural networks
recurrent neural networks
classification model
Opis:
The paper examines the usage of Convolutional Bidirectional Recurrent Neural Network (CBRNN) for a problem of quality measurement in a music content. The key contribution in this approach, compared to the existing research, is that the examined model is evaluated in terms of detecting acoustic anomalies without the requirement to provide a reference (clean) signal. Since real music content may include some modes of instrumental sounds, speech and singing voice or different audio effects, it is more complex to analyze than clean speech or artificial signals, especially without a comparison to the known reference content. The presented results might be treated as a proof of concept, since some specific types of artefacts are covered in this paper (examples of quantization defect, missing sound, distortion of gain characteristics, extra noise sound). However, the described model can be easily expanded to detect other impairments or used as a pre-trained model for other transfer learning processes. To examine the model efficiency several experiments have been performed and reported in the paper. The raw audio samples were transformed into Mel-scaled spectrograms and transferred as input to the model, first independently, then along with additional features (Zero Crossing Rate, Spectral Contrast). According to the obtained results, there is a significant increase in overall accuracy (by 10.1%), if Spectral Contrast information is provided together with Mel-scaled spectrograms. The paper examines also the influence of recursive layers on effectiveness of the artefact classification task.
Źródło:
Metrology and Measurement Systems; 2020, 27, 4; 721-733
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies