- Tytuł:
- Integration of navigation, vision, and arm manipulation towards elevator operation for laboratory transportation system using mobile robots
- Autorzy:
-
Abdulla, A. A.
Ali, M. M.
Stoll, N.
Thurow, K. - Powiązania:
- https://bibliotekanauki.pl/articles/384579.pdf
- Data publikacji:
- 2017
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
mobile robot
multi-floor
elevator handler
floor estimation
labware transportation system
kinematic analysis
robotic arm control
object detection
localization
Intel Real sense F200 sensor - Opis:
- In the automated environments, mobile robots play an important role to perform different tasks such as objects transportation and material handling. In this paper, a new method for a glassy elevator handling system based on H20 mobile robots is presented to connect distributed life science laboratories in multiple floors. Various labware and tube racks have to be transported to different workstations. Locating of elevator door, entry button detection, internal buttons recognition, robot arm manipulation, current floor estimation, and elevator door status checking are the main operations to realize a successful elevator handling system. The H20 mobile robot has dual arms where each arm consists of 6 revolute joints and a gripper. The gripper has two degrees of freedom. Different sensors have been employed with the robot to handle these operations such as Intel RealSense F200 vision sensor for entry and internal buttons detection with position estimation. A pressure sensor is used for current floor estimation inside the elevator. Also, an ultrasonic proximity distance sensor is utilized for checking the elevator door status. Different strategies including HSL color representation, adaptive binary threshold, optical character recognition, and FIR smoothing filter have been employed for the elevator operations. For pressing operation, a hand camera base and a new elevator finger model are designed. The elevator finger is resolved in a way to fit the arm gripper which is used also to manipulate the labware containers. The Kinematic solution is utilized for controlling the arms’ joints. A server/client socket architecture with TCP/IP command protocol is used for data exchange between Multi-Floor System and the H20 robot arms. Many experiments were conducted in life science laboratories to validate the developed systems. Experimental results prove an efficient performance with high success rate under different lightening condition.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 4; 34-50
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki